Thermal Stability of High Power 26650-Type Cylindrical Na-Ion Batteries
-
Abstract
As a new electrochemical power system, safety (especially thermal safety) of Na-ion batteries (NIBs) is the key towards large-scale industrialization and market application. Thus, research on the thermal stability of NIBs is helpful to evaluate the safety properties and to provide effective strategies to prevent the occurrence of battery safety failure. Thermal stability of the high-power 26650 cylindrical NIBs using Cu-based layered oxide cathode and hard carbon anode is studied. The high power NIBs can achieve fast charge and discharge at 5–10 C rate and maintain 80% capacity after 4729 cycles at 2 C/2 C rate, where the unit C denotes a measure of the rate at which a battery is charge-discharged relative to its maximum capacity. The results of accelerating rate calorimeter and differential scanning calorimetry (ARC-DSC) test results show that NIBs have a higher initial decomposition temperature (110 ℃) and a lower maximum thermal runaway temperature (350 ℃) than those of Li-ion batteries (LIBs), exhibiting a favorable thermal stability. It should be noted that the heat generation of cathode accounts for a large proportion of the total heat generation while the thermal stability of the anode determines the initial thermal runaway temperature, which is similar to LIBs. Finally, the whole temperature characteristics of the NIBs in the range of ℃–1000 ℃ are summarized, which provide guidance for the safety design and applications of NIBs. -
-
References
[1] Pan H, Hu Y S, and Chen L 2013 Energy & Environ. Sci. 6 2338 doi: 10.1039/c3ee40847g[2] Meng Q, Lu Y, Ding F, Zhang Q, Chen L, and Hu Y S 2019 ACS Energy Lett. 4 2608 doi: 10.1021/acsenergylett.9b01900[3] Jiang L, Lu Y, Wang Y, Liu L, Qi X, Zhao C, Chen L, and Hu Y S 2018 Chin. Phys. Lett. 35 048801 doi: 10.1088/0256-307X/35/4/048801[4] Zhang B, Camélia M, Christel L, Cathie V G, and Tarascon J M 2016 Adv. Energy Mater. 6 1501588 doi: 10.1002/aenm.201501588[5] Lei Y, Yan Z, Lai W, Chou S, Wang Y, Liu H, and Dou S 2020 Electrochem. Energy Rev. 3 766 doi: 10.1007/s41918-020-00079-y[6] Li Y, Lu Y, Adelhelm P, Titirici M M, and Hu Y S 2019 Chem. Soc. Rev. 48 4655 doi: 10.1039/C9CS00162J[7] Abraham K M 2020 ACS Energy Lett. 5 3544 doi: 10.1021/acsenergylett.0c02181[8] Chen Z, Xiong R, Lu J, and Li X 2018 Appl. Energy 213 375 doi: 10.1016/j.apenergy.2018.01.068[9] DP F, Scheel M, JB R, Tjaden B, Hunt I, and TJ M 2015 Nat. Commun. 6 6924 doi: 10.1038/ncomms7924[10] Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, and Zhang M 2014 J. Power Sources 255 294 doi: 10.1016/j.jpowsour.2014.01.005[11] MacNeil D D, Larcher D D, and Dahn J R 2019 J. Electrochem. Soc. 146 3596 doi: 10.1149/1.1392520[12] Lei B, Zhao W, Ziebert C, Uhlmann N, Rohde M, and Seifert H 2017 Batteries 3 14 doi: 10.3390/batteries3020014[13] Zheng S, Wang L, Feng X, and He X 2018 J. Power Sources 378 527 doi: 10.1016/j.jpowsour.2017.12.050[14] Feng X, Zheng S, He X, Wang L, Wang Y, and Ren D 2018 Front. Energy Res. 6 126 doi: 10.3389/fenrg.2018.00126[15] Ren D, Liu X, Feng X, Lu L, Ouyang M, and Li J 2018 Appl. Energy 228 633 doi: 10.1016/j.apenergy.2018.06.126[16] Roth E P and Doughty D H 2004 J. Power Sources 128 308 doi: 10.1016/j.jpowsour.2003.09.068[17] Li Y, Yang Y, Lu Y, Zhou Q, Qi X, Meng Q, Rong X, Chen L, and Hu Y S 2020 ACS Energy Lett. 5 1156 doi: 10.1021/acsenergylett.0c00337[18] Feng X, Zhen S, Ren D, He X, Wang L, Cui H, Liu X, Jin C, Zhang F, Xu C, Hsu H, Gao S, Chen T, Li Y, Wang T, Wang H, Li M, and Ouyang M 2019 Appl. Energy 246 53 doi: 10.1016/j.apenergy.2019.04.009[19] Andersson A M, Edstrom K, Rao N, and Wendsjö Å 1999 J. Power Sources 81–82 286 doi: 10.1016/S0378-77539900202-5[20] Andersson A M, Edstrom K, and Thomas J O 1999 J. Power Sources 81–82 8 doi: 10.1016/S0378-77539900185-8[21] Lee H, W, and Wang Y 2004 J. Electrochem. Soc. 151 A542 doi: 10.1149/1.1647568[22] Sacken U, Nodwell E, Sundher A, and Dahn J 1995 J. Power Sources 54 240 doi: 10.1016/0378-77539402076-F[23] Yang H, Bang H, Amine K, and Prakash J 2005 J. Electrochem. Soc. 152 A73 doi: 10.1149/1.1836126[24] Liu L, Qi X, Yin S, Zhang Q, Liu X, Suo L, Li H, Chen L, and Hu Y S 2019 ACS Energy Lett. 4 1650 doi: 10.1021/acsenergylett.9b00857[25] Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, and Granot E 1997 J. Power Sources 68 91 doi: 10.1016/S0378-77539702575-5[26] Doughty D and Roth E P 2012 Electrochem. Soc. Interface 21 37 doi: 10.1149/2.F03122if[27] Richard M and Dahn J R 1999 J. Electrochem. Soc. 146 2068 doi: 10.1149/1.1391893[28] Maleki H, Deng G, Anani A, and Howard J 1999 J. Electrochem. Soc. 146 3224 doi: 10.1149/1.1392458[29] Yamaki J, Baba Y, Katayama N, Takatsuji H, Egashira M, and Okada S 2003 J. Power Sources 119–121 789 doi: 10.1016/S0378-77530300254-4[30] Qiao R, Zhang M, Liu Y, Ren W, Lin Y, and Pan F 2016 Chin. Phys. Lett. 33 078201 doi: 10.1088/0256-307X/33/7/078201[31] Dahn J R, Fuller E W, Obrovac M, and Vonsacken U 1994 Solid State Ionics 69 265 doi: 10.1016/0167-27389490415-4[32] Arai H, Tsuda M, Saito K, Hayashi M, and Sakurai Y 2002 J. Electrochem. Soc. 149 A401 doi: 10.1149/1.1452114[33] Baba Y, Okada S, and Yamaki J 2002 Solid State Ionics 148 311 doi: 10.1016/S0167-27380200067-X[34] Ouyang C, Shi S, Wang Z, Li H, Huang X, and Chen L 2005 Chin. Phys. Lett. 22 489 doi: 10.1088/0256-307X/22/2/062[35] Li Y, Lu Y, Meng Q, Jensen A, Zhang Q, Zhang Q, Tong Y, Qi Y, Gu L, Titirici M M, and Hu Y S 2019 Adv. Energy Mater. 9 1902852 doi: 10.1002/aenm.201902852[36] Liu K, Liu Y, Lin D, Pei A, and Cui Y 2018 Sci. Adv. 4 eaas9820 doi: 10.1126/sciadv.aas9820[37] Larsson F and Mellander B E 2014 J. Electrochem. Soc. 161 A1611 doi: 10.1149/2.0311410jes[38] Xie Y, Xu G, Che H, Wang H, Yang K, Yang X G F, Yang R, Che Z, and Khalil A 2018 Chem. Mater. 30 4909 doi: 10.1021/acs.chemmater.8b00047[39] Chen R, Nolan A M, Lu J, Chen L, Huang X, and Li H 2020 Joule 4 812 doi: 10.1016/j.joule.2020.03.012[40] Liu X, Ren D, Hsu H, Feng X, GL X, Zhuang M G H, Lu L, Han X, Chu Z, Li J, He X, Amine K, and Ouyang M 2018 Joule 2 2047 doi: 10.1016/j.joule.2018.06.015[41] Zhang L, Ma Y, Cheng X, Cui Y, Guan T, Gao Y, Du C, Yin G, Lin F, and Nordlund D 2016 J. Power Sources 329 255 doi: 10.1016/j.jpowsour.2016.08.030[42] Eshetu G G, Grugeon S, Kim H, Jeong S, Wu L, Gachot G, Laruelle S, Armand M, and Passerini S 2016 ChemSusChem 9 462 doi: 10.1002/cssc.201501605[43] Ponrouch A, Marchante E, Courty M, Tarascon J M, and Palacín M R 2012 Energy & Environ. Sci. 5 8572 doi: 10.1039/c2ee22258b[44] Li Y, Lu Y, Chen L, and Hu Y S 2020 Chin. Phys. B 29 048201 doi: 10.1088/1674-1056/ab7906[45] Zhu X B and Wang L Z 2020 EcoMat 2 e12043 doi: 10.1002/eom2.12043[46] Lee Y, Lim H, Kim S O, Kim H S, Kim K J, Lee K Y, and Choi W 2018 J. Mater. Chem. A 6 20383 doi: 10.1039/C8TA07854H[47] Feng J, An Y, Ci L, and Xiong S 2015 J. Mater. Chem. A 3 14539 doi: 10.1039/C5TA03548A[48] Hu Y S, Komaba S, Forsyth M, Johnson C, and Rojo T 2019 Small Methods 3 1900184 doi: 10.1002/smtd.201900184 -
Cited by
Periodical cited type(31)
1. Li, W., Xie, H., Lin, S. et al. Insights on the degradation mechanism of 7 Ah sodium ion batteries at different aging modes. Journal of Power Sources, 2025. DOI:10.1016/j.jpowsour.2025.236635 2. Marangon, V., Bischof, K., Regalado, A.A. et al. Cell design and chemistry of commercial sodium-ion battery cells. Journal of Power Sources, 2025. DOI:10.1016/j.jpowsour.2025.236496 3. Li, W., Qin, Y., Lin, S. et al. Active material blending strategy improves the comprehensive performance of electrode:A case study. Journal of Power Sources, 2025. DOI:10.1016/j.jpowsour.2025.236275 4. Mei, W., Cheng, Z., Wang, L. et al. Thermal hazard comparison and assessment of Li-ion battery and Na-ion battery. Journal of Energy Chemistry, 2025. DOI:10.1016/j.jechem.2024.10.036 5. Niu, J., Dong, J., Zhang, X. et al. Sodium cluster-driven safety concerns of sodium-ion batteries. Energy and Environmental Science, 2025, 18(5): 2474-2484. DOI:10.1039/d4ee05509h 6. Carter, R., Waller, G.H., Jacob, C. et al. First Look at Safety and Performance Evaluation of Commercial Sodium-Ion Batteries. Energies, 2025, 18(3): 661. DOI:10.3390/en18030661 7. Zakharchenko, T.K., Nikiforov, D.I., Serdyukov, G.D. et al. Thermal Runaway of Na-Ion Batteries with Na3V2O2(PO4)2F Cathodes. Batteries and Supercaps, 2025, 8(2): e202400386. DOI:10.1002/batt.202400386 8. Lin, S., Li, W., Qin, Y. et al. Deciphering thermal failure mechanism of Sodium-Ion battery with O3-phase layered cathode. Chemical Engineering Journal, 2025. DOI:10.1016/j.cej.2025.160202 9. Qi, C., Wang, H., Li, M. et al. Research on the Thermal Runaway Behavior and Flammability Limits of Sodium-Ion and Lithium-Ion Batteries. Batteries, 2025, 11(1): 24. DOI:10.3390/batteries11010024 10. Pfeiffer, L.F., Dillenz, M., Burgard, N. et al. From structure to electrochemistry: the influence of transition metal ordering on Na+/vacancy orderings in P2-type NaxMO2 cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2024, 13(1): 540-560. DOI:10.1039/d4ta04786a 11. Wanison, R., Syahputra, W.N.H., Kammuang-lue, N. et al. Engineering aspects of sodium-ion battery: An alternative energy device for Lithium-ion batteries. Journal of Energy Storage, 2024. DOI:10.1016/j.est.2024.113497 12. Fedoryshyna, Y., Schaeffler, S., Soellner, J. et al. Quantification of venting behavior of cylindrical lithium-ion and sodium-ion batteries during thermal runaway. Journal of Power Sources, 2024. DOI:10.1016/j.jpowsour.2024.235064 13. Zeng, Z., Abulikemu, A., Zhang, J. et al. High-entropy O3-type cathode enabling low-temperature performance for sodium-ion batteries. Nano Energy, 2024. DOI:10.1016/j.nanoen.2024.109813 14. Dubarry, M., Beck, D. Communication—Forecast of the Impact of Degradation Modes on a Commercial Hard Carbon/Na3V2(PO4)2F3-based Na-ion Battery. Journal of the Electrochemical Society, 2024, 171(8): 080541. DOI:10.1149/1945-7111/ad728e 15. Streck, L., Roth, T., Bosch, H. et al. Self-Discharge and Calendar Aging Behavior of Li-Ion and Na-Ion Cells. Journal of the Electrochemical Society, 2024, 171(8): 080531. DOI:10.1149/1945-7111/ad6cfd 16. Bischof, K., Marangon, V., Kasper, M. et al. Evaluation of commercial 18650 and 26700 sodium-ion cells and comparison with well-established lithium-ion cells. Journal of Power Sources Advances, 2024. DOI:10.1016/j.powera.2024.100148 17. Fu, X., Yang, M., Zhai, M. et al. Precision anode vacancy engineering for long-lasting and fast-charging Na-Ion batteries. Energy Storage Materials, 2024. DOI:10.1016/j.ensm.2024.103450 18. Liu, Y., Zhu, L., Wang, E. et al. Electrolyte Engineering with Tamed Electrode Interphases for High-Voltage Sodium-Ion Batteries. Advanced Materials, 2024, 36(15): 2310051. DOI:10.1002/adma.202310051 19. Zhao, Q., Wang, R., Gao, M. et al. Interfacial engineering of the layered oxide cathode materials for sodium-ion battery. Nano Research, 2024, 17(3): 1441-1464. DOI:10.1007/s12274-023-6133-9 20. Irujo, E., Berrueta, A., Sanchis, P. et al. Experimental Characterization and Aging Analysis of Commercial 18650 Sodium-Ion Cells. 2024. DOI:10.1109/REST59987.2024.10645381 21. Li, M.. Elevating the Practical Application of Sodium-Ion Batteries through Advanced Characterization Studies on Cathodes. Energies, 2023, 16(24): 8004. DOI:10.3390/en16248004 22. Pfeiffer, L.F., Li, Y., Mundszinger, M. et al. Origin of Aging of a P2-NaxMn3/4Ni1/4O2 Cathode Active Material for Sodium-Ion Batteries. Chemistry of Materials, 2023, 35(19): 8065-8080. DOI:10.1021/acs.chemmater.3c01499 23. Wang, F., Liu, Z., Feng, H. et al. Engineering C-S-Fe Bond Confinement Effect to Stabilize Metallic-Phase Sulfide for High Power Density Sodium-Ion Batteries. Small, 2023, 19(37): 2302200. DOI:10.1002/smll.202302200 24. Samigullin, R.R., Zakharkin, M.V., Drozhzhin, O.A. et al. Thermal Stability of NASICON-Type Na3V2(PO4)3 and Na4VMn(PO4)3 as Cathode Materials for Sodium-ion Batteries. Energies, 2023, 16(7): 3051. DOI:10.3390/en16073051 25. Rudola, A., Sayers, R., Wright, C.J. et al. Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries. Nature Energy, 2023, 8(3): 215-218. DOI:10.1038/s41560-023-01215-w 26. He, X., Ping, P., Kong, D. et al. Comparison study of electrochemical and thermal stability of Na3V2(PO4)3 in different electrolytes under room and elevated temperature. International Journal of Energy Research, 2022, 46(15): 23173-23194. DOI:10.1002/er.8619 27. Åvall, G., Adelhelm, P. Solution to dissolution. Nature Energy, 2022, 7(8): 682-683. DOI:10.1038/s41560-022-01079-6 28. Jin, Y., Le, P.M.L., Gao, P. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nature Energy, 2022, 7(8): 718-725. DOI:10.1038/s41560-022-01055-0 29. Ding, Y., Ding, F., Rong, X. et al. Mg-doped layered oxide cathode for Na-ion batteries. Chinese Physics B, 2022, 31(6): 068201. DOI:10.1088/1674-1056/ac523b 30. Ding, F.-X., Rong, X.-H., Wang, H.-B. et al. Phase transitions of Na-ion layered oxide materials and their influence on properties | [钠离子层状氧化物材料相变及其对性能的影响]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(10): 108801. DOI:10.7498/aps.71.20220291 31. Hu, Y.-S., Li, Y. Unlocking Sustainable Na-Ion Batteries into Industry. ACS Energy Letters, 2021, 6(11): 4115-4117. DOI:10.1021/acsenergylett.1c02292 Other cited types(0)