Typesetting math: 100%

Thermal Stability of High Power 26650-Type Cylindrical Na-Ion Batteries

Funds: Supported by the National Key Technology R&D Program of China (Grant No. 2016YFB0901500), the National Natural Science Foundation of China (Grant No. 51725206), NSFCUKRI_EPSRC (Grant No. 51861165201), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21070500), and Beijing Natural Science Fund-Haidian Original Innovation Joint Fund (Grant No. L182056).
  • Received Date: April 19, 2021
  • Published Date: June 30, 2021
  • As a new electrochemical power system, safety (especially thermal safety) of Na-ion batteries (NIBs) is the key towards large-scale industrialization and market application. Thus, research on the thermal stability of NIBs is helpful to evaluate the safety properties and to provide effective strategies to prevent the occurrence of battery safety failure. Thermal stability of the high-power 26650 cylindrical NIBs using Cu-based layered oxide cathode and hard carbon anode is studied. The high power NIBs can achieve fast charge and discharge at 5–10 C rate and maintain 80% capacity after 4729 cycles at 2 C/2 C rate, where the unit C denotes a measure of the rate at which a battery is charge-discharged relative to its maximum capacity. The results of accelerating rate calorimeter and differential scanning calorimetry (ARC-DSC) test results show that NIBs have a higher initial decomposition temperature (110 ℃) and a lower maximum thermal runaway temperature (350 ℃) than those of Li-ion batteries (LIBs), exhibiting a favorable thermal stability. It should be noted that the heat generation of cathode accounts for a large proportion of the total heat generation while the thermal stability of the anode determines the initial thermal runaway temperature, which is similar to LIBs. Finally, the whole temperature characteristics of the NIBs in the range of 60 ℃–1000 ℃ are summarized, which provide guidance for the safety design and applications of NIBs.
  • Article Text

  • [1]
    Pan H, Hu Y S, and Chen L 2013 Energy & Environ. Sci. 6 2338 doi: 10.1039/c3ee40847g

    CrossRef Google Scholar

    [2]
    Meng Q, Lu Y, Ding F, Zhang Q, Chen L, and Hu Y S 2019 ACS Energy Lett. 4 2608 doi: 10.1021/acsenergylett.9b01900

    CrossRef Google Scholar

    [3]
    Jiang L, Lu Y, Wang Y, Liu L, Qi X, Zhao C, Chen L, and Hu Y S 2018 Chin. Phys. Lett. 35 048801 doi: 10.1088/0256-307X/35/4/048801

    CrossRef Google Scholar

    [4]
    Zhang B, Camélia M, Christel L, Cathie V G, and Tarascon J M 2016 Adv. Energy Mater. 6 1501588 doi: 10.1002/aenm.201501588

    CrossRef Google Scholar

    [5]
    Lei Y, Yan Z, Lai W, Chou S, Wang Y, Liu H, and Dou S 2020 Electrochem. Energy Rev. 3 766 doi: 10.1007/s41918-020-00079-y

    CrossRef Google Scholar

    [6]
    Li Y, Lu Y, Adelhelm P, Titirici M M, and Hu Y S 2019 Chem. Soc. Rev. 48 4655 doi: 10.1039/C9CS00162J

    CrossRef Google Scholar

    [7]
    Abraham K M 2020 ACS Energy Lett. 5 3544 doi: 10.1021/acsenergylett.0c02181

    CrossRef Google Scholar

    [8]
    Chen Z, Xiong R, Lu J, and Li X 2018 Appl. Energy 213 375 doi: 10.1016/j.apenergy.2018.01.068

    CrossRef Google Scholar

    [9]
    DP F, Scheel M, JB R, Tjaden B, Hunt I, and TJ M 2015 Nat. Commun. 6 6924 doi: 10.1038/ncomms7924

    CrossRef Google Scholar

    [10]
    Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, and Zhang M 2014 J. Power Sources 255 294 doi: 10.1016/j.jpowsour.2014.01.005

    CrossRef Google Scholar

    [11]
    MacNeil D D, Larcher D D, and Dahn J R 2019 J. Electrochem. Soc. 146 3596 doi: 10.1149/1.1392520

    CrossRef Google Scholar

    [12]
    Lei B, Zhao W, Ziebert C, Uhlmann N, Rohde M, and Seifert H 2017 Batteries 3 14 doi: 10.3390/batteries3020014

    CrossRef Google Scholar

    [13]
    Zheng S, Wang L, Feng X, and He X 2018 J. Power Sources 378 527 doi: 10.1016/j.jpowsour.2017.12.050

    CrossRef Google Scholar

    [14]
    Feng X, Zheng S, He X, Wang L, Wang Y, and Ren D 2018 Front. Energy Res. 6 126 doi: 10.3389/fenrg.2018.00126

    CrossRef Google Scholar

    [15]
    Ren D, Liu X, Feng X, Lu L, Ouyang M, and Li J 2018 Appl. Energy 228 633 doi: 10.1016/j.apenergy.2018.06.126

    CrossRef Google Scholar

    [16]
    Roth E P and Doughty D H 2004 J. Power Sources 128 308 doi: 10.1016/j.jpowsour.2003.09.068

    CrossRef Google Scholar

    [17]
    Li Y, Yang Y, Lu Y, Zhou Q, Qi X, Meng Q, Rong X, Chen L, and Hu Y S 2020 ACS Energy Lett. 5 1156 doi: 10.1021/acsenergylett.0c00337

    CrossRef Google Scholar

    [18]
    Feng X, Zhen S, Ren D, He X, Wang L, Cui H, Liu X, Jin C, Zhang F, Xu C, Hsu H, Gao S, Chen T, Li Y, Wang T, Wang H, Li M, and Ouyang M 2019 Appl. Energy 246 53 doi: 10.1016/j.apenergy.2019.04.009

    CrossRef Google Scholar

    [19]
    Andersson A M, Edstrom K, Rao N, and Wendsjö Å 1999 J. Power Sources 81–82 286 doi: 10.1016/S0378-77539900202-5

    CrossRef Google Scholar

    [20]
    Andersson A M, Edstrom K, and Thomas J O 1999 J. Power Sources 81–82 8 doi: 10.1016/S0378-77539900185-8

    CrossRef Google Scholar

    [21]
    Lee H, W, and Wang Y 2004 J. Electrochem. Soc. 151 A542 doi: 10.1149/1.1647568

    CrossRef Google Scholar

    [22]
    Sacken U, Nodwell E, Sundher A, and Dahn J 1995 J. Power Sources 54 240 doi: 10.1016/0378-77539402076-F

    CrossRef Google Scholar

    [23]
    Yang H, Bang H, Amine K, and Prakash J 2005 J. Electrochem. Soc. 152 A73 doi: 10.1149/1.1836126

    CrossRef Google Scholar

    [24]
    Liu L, Qi X, Yin S, Zhang Q, Liu X, Suo L, Li H, Chen L, and Hu Y S 2019 ACS Energy Lett. 4 1650 doi: 10.1021/acsenergylett.9b00857

    CrossRef Google Scholar

    [25]
    Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, and Granot E 1997 J. Power Sources 68 91 doi: 10.1016/S0378-77539702575-5

    CrossRef Google Scholar

    [26]
    Doughty D and Roth E P 2012 Electrochem. Soc. Interface 21 37 doi: 10.1149/2.F03122if

    CrossRef Google Scholar

    [27]
    Richard M and Dahn J R 1999 J. Electrochem. Soc. 146 2068 doi: 10.1149/1.1391893

    CrossRef Google Scholar

    [28]
    Maleki H, Deng G, Anani A, and Howard J 1999 J. Electrochem. Soc. 146 3224 doi: 10.1149/1.1392458

    CrossRef Google Scholar

    [29]
    Yamaki J, Baba Y, Katayama N, Takatsuji H, Egashira M, and Okada S 2003 J. Power Sources 119–121 789 doi: 10.1016/S0378-77530300254-4

    CrossRef Google Scholar

    [30]
    Qiao R, Zhang M, Liu Y, Ren W, Lin Y, and Pan F 2016 Chin. Phys. Lett. 33 078201 doi: 10.1088/0256-307X/33/7/078201

    CrossRef Google Scholar

    [31]
    Dahn J R, Fuller E W, Obrovac M, and Vonsacken U 1994 Solid State Ionics 69 265 doi: 10.1016/0167-27389490415-4

    CrossRef Google Scholar

    [32]
    Arai H, Tsuda M, Saito K, Hayashi M, and Sakurai Y 2002 J. Electrochem. Soc. 149 A401 doi: 10.1149/1.1452114

    CrossRef Google Scholar

    [33]
    Baba Y, Okada S, and Yamaki J 2002 Solid State Ionics 148 311 doi: 10.1016/S0167-27380200067-X

    CrossRef Google Scholar

    [34]
    Ouyang C, Shi S, Wang Z, Li H, Huang X, and Chen L 2005 Chin. Phys. Lett. 22 489 doi: 10.1088/0256-307X/22/2/062

    CrossRef Google Scholar

    [35]
    Li Y, Lu Y, Meng Q, Jensen A, Zhang Q, Zhang Q, Tong Y, Qi Y, Gu L, Titirici M M, and Hu Y S 2019 Adv. Energy Mater. 9 1902852 doi: 10.1002/aenm.201902852

    CrossRef Google Scholar

    [36]
    Liu K, Liu Y, Lin D, Pei A, and Cui Y 2018 Sci. Adv. 4 eaas9820 doi: 10.1126/sciadv.aas9820

    CrossRef Google Scholar

    [37]
    Larsson F and Mellander B E 2014 J. Electrochem. Soc. 161 A1611 doi: 10.1149/2.0311410jes

    CrossRef Google Scholar

    [38]
    Xie Y, Xu G, Che H, Wang H, Yang K, Yang X G F, Yang R, Che Z, and Khalil A 2018 Chem. Mater. 30 4909 doi: 10.1021/acs.chemmater.8b00047

    CrossRef Google Scholar

    [39]
    Chen R, Nolan A M, Lu J, Chen L, Huang X, and Li H 2020 Joule 4 812 doi: 10.1016/j.joule.2020.03.012

    CrossRef Google Scholar

    [40]
    Liu X, Ren D, Hsu H, Feng X, GL X, Zhuang M G H, Lu L, Han X, Chu Z, Li J, He X, Amine K, and Ouyang M 2018 Joule 2 2047 doi: 10.1016/j.joule.2018.06.015

    CrossRef Google Scholar

    [41]
    Zhang L, Ma Y, Cheng X, Cui Y, Guan T, Gao Y, Du C, Yin G, Lin F, and Nordlund D 2016 J. Power Sources 329 255 doi: 10.1016/j.jpowsour.2016.08.030

    CrossRef Google Scholar

    [42]
    Eshetu G G, Grugeon S, Kim H, Jeong S, Wu L, Gachot G, Laruelle S, Armand M, and Passerini S 2016 ChemSusChem 9 462 doi: 10.1002/cssc.201501605

    CrossRef Google Scholar

    [43]
    Ponrouch A, Marchante E, Courty M, Tarascon J M, and Palacín M R 2012 Energy & Environ. Sci. 5 8572 doi: 10.1039/c2ee22258b

    CrossRef Google Scholar

    [44]
    Li Y, Lu Y, Chen L, and Hu Y S 2020 Chin. Phys. B 29 048201 doi: 10.1088/1674-1056/ab7906

    CrossRef Google Scholar

    [45]
    Zhu X B and Wang L Z 2020 EcoMat 2 e12043 doi: 10.1002/eom2.12043

    CrossRef Google Scholar

    [46]
    Lee Y, Lim H, Kim S O, Kim H S, Kim K J, Lee K Y, and Choi W 2018 J. Mater. Chem. A 6 20383 doi: 10.1039/C8TA07854H

    CrossRef Google Scholar

    [47]
    Feng J, An Y, Ci L, and Xiong S 2015 J. Mater. Chem. A 3 14539 doi: 10.1039/C5TA03548A

    CrossRef Google Scholar

    [48]
    Hu Y S, Komaba S, Forsyth M, Johnson C, and Rojo T 2019 Small Methods 3 1900184 doi: 10.1002/smtd.201900184

    CrossRef Google Scholar

  • Cited by

    Periodical cited type(31)

    1. Li, W., Xie, H., Lin, S. et al. Insights on the degradation mechanism of 7 Ah sodium ion batteries at different aging modes. Journal of Power Sources, 2025. DOI:10.1016/j.jpowsour.2025.236635
    2. Marangon, V., Bischof, K., Regalado, A.A. et al. Cell design and chemistry of commercial sodium-ion battery cells. Journal of Power Sources, 2025. DOI:10.1016/j.jpowsour.2025.236496
    3. Li, W., Qin, Y., Lin, S. et al. Active material blending strategy improves the comprehensive performance of electrode:A case study. Journal of Power Sources, 2025. DOI:10.1016/j.jpowsour.2025.236275
    4. Mei, W., Cheng, Z., Wang, L. et al. Thermal hazard comparison and assessment of Li-ion battery and Na-ion battery. Journal of Energy Chemistry, 2025. DOI:10.1016/j.jechem.2024.10.036
    5. Niu, J., Dong, J., Zhang, X. et al. Sodium cluster-driven safety concerns of sodium-ion batteries. Energy and Environmental Science, 2025, 18(5): 2474-2484. DOI:10.1039/d4ee05509h
    6. Carter, R., Waller, G.H., Jacob, C. et al. First Look at Safety and Performance Evaluation of Commercial Sodium-Ion Batteries. Energies, 2025, 18(3): 661. DOI:10.3390/en18030661
    7. Zakharchenko, T.K., Nikiforov, D.I., Serdyukov, G.D. et al. Thermal Runaway of Na-Ion Batteries with Na3V2O2(PO4)2F Cathodes. Batteries and Supercaps, 2025, 8(2): e202400386. DOI:10.1002/batt.202400386
    8. Lin, S., Li, W., Qin, Y. et al. Deciphering thermal failure mechanism of Sodium-Ion battery with O3-phase layered cathode. Chemical Engineering Journal, 2025. DOI:10.1016/j.cej.2025.160202
    9. Qi, C., Wang, H., Li, M. et al. Research on the Thermal Runaway Behavior and Flammability Limits of Sodium-Ion and Lithium-Ion Batteries. Batteries, 2025, 11(1): 24. DOI:10.3390/batteries11010024
    10. Pfeiffer, L.F., Dillenz, M., Burgard, N. et al. From structure to electrochemistry: the influence of transition metal ordering on Na+/vacancy orderings in P2-type NaxMO2 cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2024, 13(1): 540-560. DOI:10.1039/d4ta04786a
    11. Wanison, R., Syahputra, W.N.H., Kammuang-lue, N. et al. Engineering aspects of sodium-ion battery: An alternative energy device for Lithium-ion batteries. Journal of Energy Storage, 2024. DOI:10.1016/j.est.2024.113497
    12. Fedoryshyna, Y., Schaeffler, S., Soellner, J. et al. Quantification of venting behavior of cylindrical lithium-ion and sodium-ion batteries during thermal runaway. Journal of Power Sources, 2024. DOI:10.1016/j.jpowsour.2024.235064
    13. Zeng, Z., Abulikemu, A., Zhang, J. et al. High-entropy O3-type cathode enabling low-temperature performance for sodium-ion batteries. Nano Energy, 2024. DOI:10.1016/j.nanoen.2024.109813
    14. Dubarry, M., Beck, D. Communication—Forecast of the Impact of Degradation Modes on a Commercial Hard Carbon/Na3V2(PO4)2F3-based Na-ion Battery. Journal of the Electrochemical Society, 2024, 171(8): 080541. DOI:10.1149/1945-7111/ad728e
    15. Streck, L., Roth, T., Bosch, H. et al. Self-Discharge and Calendar Aging Behavior of Li-Ion and Na-Ion Cells. Journal of the Electrochemical Society, 2024, 171(8): 080531. DOI:10.1149/1945-7111/ad6cfd
    16. Bischof, K., Marangon, V., Kasper, M. et al. Evaluation of commercial 18650 and 26700 sodium-ion cells and comparison with well-established lithium-ion cells. Journal of Power Sources Advances, 2024. DOI:10.1016/j.powera.2024.100148
    17. Fu, X., Yang, M., Zhai, M. et al. Precision anode vacancy engineering for long-lasting and fast-charging Na-Ion batteries. Energy Storage Materials, 2024. DOI:10.1016/j.ensm.2024.103450
    18. Liu, Y., Zhu, L., Wang, E. et al. Electrolyte Engineering with Tamed Electrode Interphases for High-Voltage Sodium-Ion Batteries. Advanced Materials, 2024, 36(15): 2310051. DOI:10.1002/adma.202310051
    19. Zhao, Q., Wang, R., Gao, M. et al. Interfacial engineering of the layered oxide cathode materials for sodium-ion battery. Nano Research, 2024, 17(3): 1441-1464. DOI:10.1007/s12274-023-6133-9
    20. Irujo, E., Berrueta, A., Sanchis, P. et al. Experimental Characterization and Aging Analysis of Commercial 18650 Sodium-Ion Cells. 2024. DOI:10.1109/REST59987.2024.10645381
    21. Li, M.. Elevating the Practical Application of Sodium-Ion Batteries through Advanced Characterization Studies on Cathodes. Energies, 2023, 16(24): 8004. DOI:10.3390/en16248004
    22. Pfeiffer, L.F., Li, Y., Mundszinger, M. et al. Origin of Aging of a P2-NaxMn3/4Ni1/4O2 Cathode Active Material for Sodium-Ion Batteries. Chemistry of Materials, 2023, 35(19): 8065-8080. DOI:10.1021/acs.chemmater.3c01499
    23. Wang, F., Liu, Z., Feng, H. et al. Engineering C-S-Fe Bond Confinement Effect to Stabilize Metallic-Phase Sulfide for High Power Density Sodium-Ion Batteries. Small, 2023, 19(37): 2302200. DOI:10.1002/smll.202302200
    24. Samigullin, R.R., Zakharkin, M.V., Drozhzhin, O.A. et al. Thermal Stability of NASICON-Type Na3V2(PO4)3 and Na4VMn(PO4)3 as Cathode Materials for Sodium-ion Batteries. Energies, 2023, 16(7): 3051. DOI:10.3390/en16073051
    25. Rudola, A., Sayers, R., Wright, C.J. et al. Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries. Nature Energy, 2023, 8(3): 215-218. DOI:10.1038/s41560-023-01215-w
    26. He, X., Ping, P., Kong, D. et al. Comparison study of electrochemical and thermal stability of Na3V2(PO4)3 in different electrolytes under room and elevated temperature. International Journal of Energy Research, 2022, 46(15): 23173-23194. DOI:10.1002/er.8619
    27. Åvall, G., Adelhelm, P. Solution to dissolution. Nature Energy, 2022, 7(8): 682-683. DOI:10.1038/s41560-022-01079-6
    28. Jin, Y., Le, P.M.L., Gao, P. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nature Energy, 2022, 7(8): 718-725. DOI:10.1038/s41560-022-01055-0
    29. Ding, Y., Ding, F., Rong, X. et al. Mg-doped layered oxide cathode for Na-ion batteries. Chinese Physics B, 2022, 31(6): 068201. DOI:10.1088/1674-1056/ac523b
    30. Ding, F.-X., Rong, X.-H., Wang, H.-B. et al. Phase transitions of Na-ion layered oxide materials and their influence on properties | [钠离子层状氧化物材料相变及其对性能的影响]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(10): 108801. DOI:10.7498/aps.71.20220291
    31. Hu, Y.-S., Li, Y. Unlocking Sustainable Na-Ion Batteries into Industry. ACS Energy Letters, 2021, 6(11): 4115-4117. DOI:10.1021/acsenergylett.1c02292

    Other cited types(0)

Catalog

    Article views (864) PDF downloads (1716) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return