Coherent Control of High Harmonic Generation Driven by Metal Nanotip Photoemission

Funds: Supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0307700 and 2016YFA0401100), the National Natural Science Foundation of China (Grant Nos. 11774215, 11674209, 91950101, 11947243, 11334009, 11425414, and 11947080), Sino-German Mobility Programme (Grant No. M-0031), Department of Education of Guangdong Province (Grant No. 2018KCXTD011), High Level University Projects of the Guangdong Province (Mathematics, Shantou University), and the Open Fund of the State Key Laboratory of High Field Laser Physics (SIOM).
  • Received Date: January 20, 2021
  • Published Date: May 31, 2021
  • Steering ultrafast electron dynamics with well-controlled laser fields is very important for generation of intense supercontinuum radiation. It can be achieved through coherent control of the symmetry of the interaction between strong-field laser fields and a metal nanotip. We employ a scheme of two-color laser pulses combined with a weak static field to realize the control of a single quantum path to generate high harmonic generation from a single solid-state nanoemitter. Moreover, a smooth and ultrabroad supercontinuum in the extreme ultraviolet region is obtained, which can produce a single attosecond pulse. Our findings are beneficial for efficient generation of isolated sub-100 as XUV pulses from solid-state sources.
  • Article Text

  • [1]
    Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 doi: 10.1103/RevModPhys.81.163

    CrossRef Google Scholar

    [2]
    Corkum P B and Krausz F 2007 Nat. Phys. 3 381 doi: 10.1038/nphys620

    CrossRef Google Scholar

    [3]
    Salières P, Carré B, Le D L, Grasbon F, Paulus G G, Walther H, Kopold R, Becker W, Milošević D B, Sanpera A, and Lewenstein M 2001 Science 292 902 doi: 10.1126/science.108836

    CrossRef Google Scholar

    [4]
    Mairesse Y, de B A, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller H G, Agostini P, and Salières P 2003 Science 302 1540 doi: 10.1126/science.1090277

    CrossRef Google Scholar

    [5]
    Song X H, Gong S Q, Yang W F, Jin S Q, Feng X L, and Xu Z Z 2004 Opt. Commun. 236 151 doi: 10.1016/j.optcom.2004.03.029

    CrossRef Google Scholar

    [6]
    Yang W F, Song X H, Gong S Q, Cheng Y, and Xu Z Z 2007 Phys. Rev. Lett. 99 133602 doi: 10.1103/PhysRevLett.99.133602

    CrossRef Google Scholar

    [7]
    Liu X W, Zhang G J, Li J, Shi G L, Zhou M Y, Huang B Q, Tang Y J, Song X H, and Yang W F 2020 Phys. Rev. Lett. 124 113202 doi: 10.1103/PhysRevLett.124.113202

    CrossRef Google Scholar

    [8]
    Li F, Yang Y J, Chen J, Liu X J, Wei Z Y, and Wang B B 2020 Chin. Phys. Lett. 37 113201 doi: 10.1088/0256-307X/37/11/113201

    CrossRef Google Scholar

    [9]
    Gong X C, Lin C, He F, Song Q Y, Lin K, Ji Q Y, Zhang W B, Ma J Y, Lu P F, Liu Y Q, Zeng H P, Yang W F, and Wu J 2017 Phys. Rev. Lett. 118 143203 doi: 10.1103/PhysRevLett.118.143203

    CrossRef Google Scholar

    [10]
    Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J, and Yang W F 2018 Phys. Rev. Lett. 121 103201 doi: 10.1103/PhysRevLett.121.103201

    CrossRef Google Scholar

    [11]
    Song X H, Xu J W, Lin C, Sheng Z H, Liu P, Yu X H, Zhang H T, Yang W F, Hu S L, Chen J, Xu S P, Chen Y J, Quan W, and Liu X J 2017 Phys. Rev. A 95 033426 doi: 10.1103/PhysRevA.95.033426

    CrossRef Google Scholar

    [12]
    Sun T, Zhang S W, Wang R, Feng S, Liu Y, Lv H, and Xu H F 2020 Chin. Phys. Lett. 37 043301 doi: 10.1088/0256-307X/37/4/043301

    CrossRef Google Scholar

    [13]
    Yang W F, Zhang H T, Lin C, Xu J W, Sheng Z H, Song X H, Hu S L, and Chen J 2016 Phys. Rev. A 94 043419 doi: 10.1103/PhysRevA.94.043419

    CrossRef Google Scholar

    [14]
    Song X H, Hao Z Z, Yan M, Wu M L, and Yang W F 2015 Laser Phys. Lett. 12 105003 doi: 10.1088/1612-2011/12/10/105003

    CrossRef Google Scholar

    [15]
    Chen Z J, Zheng Y Y, Yang W F, Song X H, Xu J L, Dimauro L F, Zatsarinny O, Bartschat K, Morishita T, Zhao S F, and Lin C D 2015 Phys. Rev. A 92 063427 doi: 10.1103/PhysRevA.92.063427

    CrossRef Google Scholar

    [16]
    Yang W F, Sheng Z H, Feng X P, Wu M L, Chen Z J, and Song X H 2014 Opt. Express 22 2519 doi: 10.1364/OE.22.002519

    CrossRef Google Scholar

    [17]
    Wang X W, Wang L, Xiao F, Zhang D W, Lv Z H, Yuan J M, and Zhao Z X 2020 Chin. Phys. Lett. 37 023201 doi: 10.1088/0256-307X/37/2/023201

    CrossRef Google Scholar

    [18]
    Yang W F, Song X H, Zeng Z N, Li R X, and Xu Z Z 2010 Opt. Express 18 2558 doi: 10.1364/OE.18.002558

    CrossRef Google Scholar

    [19]
    Zhang J, Hua L Q, Chen Z, Zhu M F, Gong C, and Liu X J 2020 Chin. Phys. Lett. 37 124203 doi: 10.1088/0256-307X/37/12/124203

    CrossRef Google Scholar

    [20]
    Zhang C J, Yang W F, Song X H, and Xu Z Z 2009 Phys. Rev. A 79 043823 doi: 10.1103/PhysRevA.79.043823

    CrossRef Google Scholar

    [21]
    Corkum P B 1993 Phys. Rev. Lett. 71 1994 doi: 10.1103/PhysRevLett.71.1994

    CrossRef Google Scholar

    [22]
    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S D, and Nisoli M 2006 Science 314 443 doi: 10.1126/science.1132838

    CrossRef Google Scholar

    [23]
    Song X H, Gong S Q, Yang W F, and Xu Z Z 2004 Phys. Rev. A 70 013817 doi: 10.1103/PhysRevA.70.013817

    CrossRef Google Scholar

    [24]
    Yang W F, Gong S Q, Li R X, and Xu Z Z 2007 Phys. Lett. A 362 37 doi: 10.1016/j.physleta.2006.09.087

    CrossRef Google Scholar

    [25]
    Mashiko H, Gilbertson S, Li C, Khan S D, Shakya M M, Moon E, and Chang Z 2008 Phys. Rev. Lett. 100 103906 doi: 10.1103/PhysRevLett.100.103906

    CrossRef Google Scholar

    [26]
    Baker S, Robinson J S, Haworth C A, Teng H, Smith R A, Chirila C C, Lein M, Tisch J G, and Marangos J P 2006 Science 312 424 doi: 10.1126/science.1123904

    CrossRef Google Scholar

    [27]
    Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carré B, Taïeb R, and Salières P 2010 Nat. Phys. 6 200 doi: 10.1038/nphys1511

    CrossRef Google Scholar

    [28]
    Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, and Ivanov M Y 2009 Proc. Natl. Acad. Sci. USA 106 16556 doi: 10.1073/pnas.0907434106

    CrossRef Google Scholar

    [29]
    Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P B, and Ivanov M Y 2009 Nature 460 972 doi: 10.1038/nature08253

    CrossRef Google Scholar

    [30]
    Power E P, March A M, Catoire F, Sistrun E, Krushelnick K, Agostini P, and DiMauro L F 2010 Nat. Photon. 4 352 doi: 10.1038/nphoton.2010.38

    CrossRef Google Scholar

    [31]
    Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, and Reis D A 2011 Nat. Phys. 7 138 doi: 10.1038/nphys1847

    CrossRef Google Scholar

    [32]
    Vampa G, McDonald C R, Orlando G, Klug D D, Corkum P B, and Brabec T 2014 Phys. Rev. Lett. 113 073901 doi: 10.1103/PhysRevLett.113.073901

    CrossRef Google Scholar

    [33]
    Fu S L, Feng Y K, Li J B, Yue S J, Zhang X, Hu B T, and Du H C 2020 Phys. Rev. A 101 023402 doi: 10.1103/PhysRevA.101.023402

    CrossRef Google Scholar

    [34]
    Song X H, Yang S D, Zuo R X, Meier T, and Yang W F 2020 Phys. Rev. A 101 033410 doi: 10.1103/PhysRevA.101.033410

    CrossRef Google Scholar

    [35]
    Jiang S C, Chen J G, Wei H, Yu C, Lu R F, and Lin C D 2018 Phys. Rev. Lett. 120 253201 doi: 10.1103/PhysRevLett.120.253201

    CrossRef Google Scholar

    [36]
    Song X H, Zuo R X, Yang S D, Li P C, Meier T, and Yang W F 2019 Opt. Express 27 2225 doi: 10.1364/OE.27.002225

    CrossRef Google Scholar

    [37]
    Li L, Lan P F, Zhu X S, Huang T F, Zhang Q B, Lein M, and Lu P X 2019 Phys. Rev. Lett. 122 193901 doi: 10.1103/PhysRevLett.122.193901

    CrossRef Google Scholar

    [38]
    Zuo R X, Song X H, Liu X W, Yang S D, and Yang W F 2019 Chin. Phys. B 28 094208 doi: 10.1088/1674-1056/ab3446

    CrossRef Google Scholar

    [39]
    Song X H, Wang N N, Yan M, Lin C, Förstner J, Yang W F 2017 Opt. Express 25 13207 doi: 10.1364/OE.25.013207

    CrossRef Google Scholar

    [40]
    Kim S, Jin J, Kim Y, Park I, Kim Y, and Kim S 2008 Nature 453 757 doi: 10.1038/nature07012

    CrossRef Google Scholar

    [41]
    Han S, Kim H, Kim Y W, Kim Y J, Kim S C, Park I Y, and Kim S 2016 Nat. Commun. 7 13105 doi: 10.1038/ncomms13105

    CrossRef Google Scholar

    [42]
    Sivis M, Duwe M, Abel B, and Ropers C 2013 Nat. Phys. 9 304 doi: 10.1038/nphys2590

    CrossRef Google Scholar

    [43]
    Krüger M, Schenk M, and Hommelhoff P 2011 Nature 475 78 doi: 10.1038/nature10196

    CrossRef Google Scholar

    [44]
    Förster M, Paschen T, Krüger M, Lemell C, Wachter G, Libisch F, Madlener T, Burgdörfer J, and Hommelhoff P 2016 Phys. Rev. Lett. 117 217601 doi: 10.1103/PhysRevLett.117.217601

    CrossRef Google Scholar

    [45]
    Krüger M, Schenk M, Förster M, and Hommelhoff P 2012 J. Phys. B 45 074006 doi: 10.1088/0953-4075/45/7/074006

    CrossRef Google Scholar

    [46]
    Ciappina M F, Pérez-Hernández J A, Shaaran T, Lewenstein M, Krüger M, and Hommelhoff P 2014 Phys. Rev. A 89 013409 doi: 10.1103/PhysRevA.89.013409

    CrossRef Google Scholar

    [47]
    Heather R and Metiu H 1987 J. Chem. Phys. 86 5009 doi: 10.1063/1.452672

    CrossRef Google Scholar

    [48]
    Antoine P, Piraux B, and Maquet A 1995 Phys. Rev. A 51 R1750 doi: 10.1103/PhysRevA.51.R1750

    CrossRef Google Scholar

    [49]
    Tong X M and Chu S I 2000 Phys. Rev. A 61 021802 doi: 10.1103/PhysRevA.61.021802

    CrossRef Google Scholar

    [50]
    Lewenstein M, Salières P, and L'Huillier A 1995 Phys. Rev. A 52 4747 doi: 10.1103/PhysRevA.52.4747

    CrossRef Google Scholar

    [51]
    Bellini M, Lyngå C, Tozzi A, Gaarde M B, Hänsch T W, L'Huillier A, and Wahlström C G 1998 Phys. Rev. Lett. 81 297 doi: 10.1103/PhysRevLett.81.297

    CrossRef Google Scholar

    [52]
    Serrat C and Biegert J 2010 Phys. Rev. Lett. 104 073901 doi: 10.1103/PhysRevLett.104.073901

    CrossRef Google Scholar

    [53]
    Xia C L, Zhang G T, Wu J, and Liu X S 2010 Phys. Rev. A 81 043420 doi: 10.1103/PhysRevA.81.043420

    CrossRef Google Scholar

  • Related Articles

    [1]Man Xing, Jun Wang, Xi Zhao, Shushan Zhou. The Role of Multi-Electron and Multi-Orbital Effects in High-Order Harmonic Generation of Benzonitrile Molecules [J]. Chin. Phys. Lett., 2025, 42(4): 043201. doi: 10.1088/0256-307X/42/4/043201
    [2]GE Yu-Cheng. Laser Phase Relations of High-Order Harmonic Generation [J]. Chin. Phys. Lett., 2006, 23(9): 2461-2464.
    [3]WANG Bing-Bing, CHEN Jing, LIU Jie, LI Xiao-Feng, FU Pan-Ming. Carrier Envelope Phase Controlled High-Order Harmonic Generation in Ultrashort Laser Pulse [J]. Chin. Phys. Lett., 2005, 22(9): 2237-2240.
    [4]WANG Bing-Bing, CHENG Tai-Wang, LI Xiao-Feng, FU Pan-Ming. High-Harmonic Generation by Initial Coherent States in a Short Laser Pulse [J]. Chin. Phys. Lett., 2004, 21(9): 1727-1729.
    [5]CHENG Xiao-Man, YAO Su-Wei, LI Cheng-Quan, MANAKA Takaaki, IWAMOTO Mitsumasa. Analysis of Second-Harmonic Generation from CuttbPc LB Film/Metal Interface [J]. Chin. Phys. Lett., 2004, 21(1): 153-155.
    [6]CHENG Tai-Wang, LI Xiao-Feng, AO Shu-Yan, FU Pan-Ming. Interpretation of Plateau in High-Harmonic Generation [J]. Chin. Phys. Lett., 2003, 20(9): 1511-1513.
    [7]LU Wei-Xin, LIU Ting-Ting, YANG Hong, SUN Tao-Heng, GONG Qi-Huang. High-Order Harmonic Generation by Two Non-collinear Coherent Femtosecond Laser Pulses [J]. Chin. Phys. Lett., 2003, 20(6): 848-851.
    [8]LIU Ting-Ting, WANG Da-Wei, LU Wei-Xin, SUN Quan, YANG Hong, JIANG Hong-Bing, GONG Qi-Huang. Fifth-Order Harmonic Generation using a Coherent Controlled Two-Pulsed Optical Field [J]. Chin. Phys. Lett., 2002, 19(9): 1301-1303.
    [9]CHEN Jing, CHEN Shi-Gang, LIU Jie. High-Order Harmonic Generation in the Ionization Process [J]. Chin. Phys. Lett., 2000, 17(10): 723-725.
    [10]GAO Liang-hui, LI Xiao-feng, GUO Dong-sheng, FU Pan-ming. Formal Scattering Approach to High-Order Harmonic Generation [J]. Chin. Phys. Lett., 1999, 16(7): 502-504.
  • Cited by

    Periodical cited type(8)

    1. Tao, X., Yang, A., Quan, Y. et al. Superconductivity and high hardness in scandium-borides under pressure. Physical Chemistry Chemical Physics, 2025. DOI:10.1039/d4cp03740e
    2. Talantsev, E.F., Minkov, V.S., Balakirev, F.F. et al. Comment on "nonstandard superconductivity or no superconductivity in hydrides under high pressure". Physical Review B, 2024, 110(18): 186501. DOI:10.1103/PhysRevB.110.186501
    3. Zhang, Y.-J., Zhu, Y., Li, Q. et al. Record-High Superconducting Transition Temperature in a Ti1-xMnx Alloy with the Rich Magnetic Element Mn. Journal of the American Chemical Society, 2024, 146(30): 21110-21119. DOI:10.1021/jacs.4c06836
    4. Xue, H.-T., Li, J., Chang, Z. et al. Deep-learning potential molecular dynamics simulations of the structural and physical properties of rare-earth metal scandium. Computational Materials Science, 2024. DOI:10.1016/j.commatsci.2024.113072
    5. Wu, X., Guo, S., Guo, J. et al. Robust T c in element molybdenum up to 160 GPa. Chinese Physics B, 2024, 33(4): 047406. DOI:10.1088/1674-1056/ad2a78
    6. He, X., Zhang, C.L., Li, Z.W. et al. Superconductivity discovered in niobium polyhydride at high pressures. Materials Today Physics, 2024. DOI:10.1016/j.mtphys.2023.101298
    7. Zhao, K., Wang, Q., Li, H. et al. Superconductivity in dense scandium-based phosphides. Physical Review B, 2023, 108(17): 174513. DOI:10.1103/PhysRevB.108.174513
    8. Wang, K., Sun, Y., Zhou, M. et al. Superconductivity up to 37.6 K in compressed scandium. Physical Review Research, 2023, 5(4): 043248. DOI:10.1103/PhysRevResearch.5.043248

    Other cited types(0)

Catalog

    Article views (189) PDF downloads (374) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return