Thermal Management of Air-Cooling Lithium-Ion Battery Pack
-
Abstract
Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs. -
-
References
[1] Xiong R, Sun F, Gong X, and Gao C 2014 Appl. Energy 113 1421 doi: 10.1016/j.apenergy.2013.09.006[2] Xiong R, Sun F, Chen Z, and He H 2014 Appl. Energy 113 463 doi: 10.1016/j.apenergy.2013.07.061[3] Rad M S, Danilov D L, Baghalha M, Kazemeini M, and Notten P H L 2013 Electrochim. Acta 102 183 doi: 10.1016/j.electacta.2013.03.167[4] Kang D, Lee P Y, Yoo K, and Kim J 2020 J. Energy Storage 27 101017 doi: 10.1016/j.est.2019.101017[5] Wang L, Zhao Y, Quan Z, and Liang J 2021 J. Energy Storage 39 102624 doi: 10.1016/j.est.2021.102624[6] Qiao R X, Zhang M J, Liu Y D, Ren W J, Lin Y, and Pan F 2016 Chin. Phys. Lett. 33 078201 doi: 10.1088/0256-307X/33/7/078201[7] Ng S S Y, Xing Y, and Tsui K L 2014 Appl. Energy 118 114 doi: 10.1016/j.apenergy.2013.12.020[8] Ping P, Wang Q, Huang P, Sun J, and Chen C 2014 Appl. Energy 129 261 doi: 10.1016/j.apenergy.2014.04.092[9] Siruvuri S V and Budarapu P 2020 J. Energy Storage 29 101377 doi: 10.1016/j.est.2020.101377[10] Pan Y, Feng X, Zhang M, Han X, Lu L, and Ouyang M 2020 J. Cleaner Prod. 255 120277 doi: 10.1016/j.jclepro.2020.120277[11] Li X, Xu J, Hong J, Tian J, and Tian Y 2021 Energy 214 118858 doi: 10.1016/j.energy.2020.118858[12] Wang T, Tseng K J, Zhao J, and Wei Z 2014 Appl. Energy 134 229 doi: 10.1016/j.apenergy.2014.08.013[13] Huang Q, Li X, Zhang G, Deng J, and Wang C 2021 Appl. Therm. Eng. 183 116151 doi: 10.1016/j.applthermaleng.2020.116151[14] Luo X, Guo Q, Li X, Tao Z, Lei S, Liu J, Kang L, Zheng D, and Liu Z 2020 Renewable Energy 145 2046 doi: 10.1016/j.renene.2019.07.112[15] Qian Z, Li Y, and Rao Z 2016 Energy Convers. Manage. 126 622 doi: 10.1016/j.enconman.2016.08.063[16] Greco A, Cao D, Jiang X, and Yang H 2014 J. Power Sources 257 344 doi: 10.1016/j.jpowsour.2014.02.004[17] Zhao R, Zhang S, Liu J, and Gu J 2015 J. Power Sources 299 557 doi: 10.1016/j.jpowsour.2015.09.001[18] Lu M, Zhang X, Ji J, Xu X, and Zhang Y 2020 J. Energy Storage 27 101155 doi: 10.1016/j.est.2019.101155[19] Zhao G, Wang X, Negnevitsky M, and Zhang H 2021 J. Power Sources 501 230001 doi: 10.1016/j.jpowsour.2021.230001[20] Ye X, Zhao Y, and Quan Z 2018 Appl. Therm. Eng. 130 74 doi: 10.1016/j.applthermaleng.2017.10.141[21] Shang Z, Qi H, Liu X, Ouyang C, and Wang Y 2019 Int. J. Heat Mass Transfer 130 33 doi: 10.1016/j.ijheatmasstransfer.2018.10.074[22] Xie J, Ge Z, Zang M, and Wang S 2017 Appl. Therm. Eng. 126 583 doi: 10.1016/j.applthermaleng.2017.07.143[23] Yang T, Yang N, Zhang X, and Li G 2016 Int. J. Thermal Sci. 108 132 doi: 10.1016/j.ijthermalsci.2016.05.009[24] Saw L H, Ye Y, Tay A A, Chong W T, Kuan S H, and Yew M C 2016 Appl. Energy 177 783 doi: 10.1016/j.apenergy.2016.05.122[25] Wang T, Tseng K, and Zhao J 2015 Appl. Therm. Eng. 90 521 doi: 10.1016/j.applthermaleng.2015.07.033[26] Yang W, Zhou F, Zhou H, and Liu Y 2020 Int. J. Heat Mass Transfer 161 120307 doi: 10.1016/j.ijheatmasstransfer.2020.120307[27] Behi H, Karimi D, Behi M, Ghanbarpour M, Jaguemont J, Sokkeh M A, Gandoman F H, Berecibar M, and Van Mierlo J 2020 Appl. Therm. Eng. 174 115280 doi: 10.1016/j.applthermaleng.2020.115280[28] Chen D, Jiang J, Kim G H, Yang C, and Pesaran A 2016 Appl. Therm. Eng. 94 846 doi: 10.1016/j.applthermaleng.2015.10.015[29] Kizilel R, Sabbah R, Selman J R, and Al-Hallaj S 2009 J. Power Sources 194 1105 doi: 10.1016/j.jpowsour.2009.06.074[30] Xu X and He R 2013 J. Power Sources 240 33 doi: 10.1016/j.jpowsour.2013.03.004[31] Park H 2013 J. Power Sources 239 30 doi: 10.1016/j.jpowsour.2013.03.102[32] Deng C, Yao Z, Yu X, Yuan C, Li Z, and Su L 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific ITEC Asia-Pacific, 31 August–3 September 2014, Beijing, pp 1–4 doi: 10.1109/ITEC-AP.2014.6941008[33] Liu H, Wei Z, He W, and Zhao J 2017 Energy Convers. Manage. 150 304 doi: 10.1016/j.enconman.2017.08.016[34] Lian C, Janssen M, Liu H, and van Roij R 2020 Phys. Rev. Lett. 124 076001 doi: 10.1103/PhysRevLett.124.076001[35] Doyle M, Fuller T F, and Newman J 1993 J. Electrochem. Soc. 140 1526 doi: 10.1149/1.2221597[36] Aurbach D, Ein-Ely Y, and Zaban A 1994 J. Electrochem. Soc. 141 L1 doi: 10.1149/1.2054718[37] Levi M D and Aurbach D 1997 J. Electroanal. Chem. 421 79 doi: 10.1016/S0022-07289604832-2[38] Du J, Tao H, Yang J, Lian C, Lin S, and Liu H 2021 Chin. J. Chem. Eng. 31 33 doi: 10.1016/j.cjche.2020.09.041[39] Yudha C S, Muzayanha S U, Widiyandari H, Iskandar F, Sutopo W, and Purwanto A 2019 Energies 12 1886 doi: 10.3390/en12101886[40] Chung Y and Kim M S 2019 Energy Convers. Manage. 196 105 doi: 10.1016/j.enconman.2019.05.083[41] Pesaran A A 2001 Battery Man 435 34 -
Cited by
Periodical cited type(13)
1. Arumugam, A., Buonomo, B., Nardini, S. et al. Numerical investigation on geometrical parameter effects of metal foams in liquid cooling efficiency of battery thermal management within phase change materials. Journal of Physics: Conference Series, 2025, 2940(1): 012019. DOI:10.1088/1742-6596/2940/1/012019 2. Chen, Y., Tao, H., Li, B. et al. Modeling and Optimizing the Drying Process of Electrode Manufacturing for Lithium-Ion Batteries. Energy Technology, 2024, 12(11): 2401146. DOI:10.1002/ente.202401146 3. Xu, L., Wang, S., Xi, L. et al. A Review of Thermal Management and Heat Transfer of Lithium-Ion Batteries. Energies, 2024, 17(16): 3873. DOI:10.3390/en17163873 4. Alqaed, S., Mustafa, J., Mohammad Sajadi, S. et al. Enhancing thermal performance of cylindrical Li-ion battery packs: A 3D simulation with strategic phase change material integration and airflow control. Arabian Journal of Chemistry, 2024, 17(8): 105835. DOI:10.1016/j.arabjc.2024.105835 5. Lazim, A.A., Ismael, M.A. Cooling of lithium-ion battery pack using different configurations of flexible baffled channels. Heat Transfer, 2024, 53(3): 1267-1291. DOI:10.1002/htj.22991 6. Hwang, F.S., Confrey, T., Reidy, C. et al. Review of battery thermal management systems in electric vehicles. Renewable and Sustainable Energy Reviews, 2024. DOI:10.1016/j.rser.2023.114171 7. Deng, J., Huang, Q., Li, X. et al. Influence mechanism of battery thermal management with flexible flame retardant composite phase change materials by temperature aging. Renewable Energy, 2024. DOI:10.1016/j.renene.2023.119922 8. Chavan, S., Venkateswarlu, B., Liu, J. et al. Investigating the impact of fluid flow channels and cooling fluids on thermal management of lithium-ion battery: a simulation study. Journal of Thermal Analysis and Calorimetry, 2024, 149(4): 1629-1648. DOI:10.1007/s10973-023-12802-0 9. Arumugam, A., Buonomo, B., Nardini, S. et al. OPTIMIZING LITHIUM-BASED BATTERY COOLING: A NUMERICAL SIMULATION OF PHASE CHANGE MATERIALS PARTIALLY FILLED WITH METAL FOAM BASED LIQUID COOLING TECHNIQUE. 2024. DOI:10.1115/IMECE2024-145703 10. Zhang, Y., Feng, J., Qin, J. et al. Pathways to Next-Generation Fire-Safe Alkali-Ion Batteries. Advanced Science, 2023, 10(24): 2301056. DOI:10.1002/advs.202301056 11. Zhou, D., Luo, Y., Bi, C. et al. Experimental and simulative investigation on battery thermal management system with structural optimization of composite phase change material. Journal of Energy Storage, 2023. DOI:10.1016/j.est.2023.106613 12. Du, J., Yang, W., Huang, K. et al. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries | [复合相变材料/空冷复合式锂离子电池模块散热性能]. Huagong Xuebao/CIESC Journal, 2023, 74(2): 674-689. DOI:10.11949/0438-1157.20221068 13. Huang, P., Tao, H., Yang, J. et al. Four stages of thermal effect coupled with ion-charge transports during the charging process of porous electrodes. AIChE Journal, 2022, 68(10): e17790. DOI:10.1002/aic.17790 Other cited types(0)