Thermal Management of Air-Cooling Lithium-Ion Battery Pack

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 91834301 and 22078088), the National Natural Science Foundation of China for Innovative Research Groups (Grant No. 51621002), and the Shanghai Rising-Star Program (Grant No. 21QA1401900).
  • Received Date: August 10, 2021
  • Published Date: October 31, 2021
  • Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs.
  • Article Text

  • [1]
    Xiong R, Sun F, Gong X, and Gao C 2014 Appl. Energy 113 1421 doi: 10.1016/j.apenergy.2013.09.006

    CrossRef Google Scholar

    [2]
    Xiong R, Sun F, Chen Z, and He H 2014 Appl. Energy 113 463 doi: 10.1016/j.apenergy.2013.07.061

    CrossRef Google Scholar

    [3]
    Rad M S, Danilov D L, Baghalha M, Kazemeini M, and Notten P H L 2013 Electrochim. Acta 102 183 doi: 10.1016/j.electacta.2013.03.167

    CrossRef Google Scholar

    [4]
    Kang D, Lee P Y, Yoo K, and Kim J 2020 J. Energy Storage 27 101017 doi: 10.1016/j.est.2019.101017

    CrossRef Google Scholar

    [5]
    Wang L, Zhao Y, Quan Z, and Liang J 2021 J. Energy Storage 39 102624 doi: 10.1016/j.est.2021.102624

    CrossRef Google Scholar

    [6]
    Qiao R X, Zhang M J, Liu Y D, Ren W J, Lin Y, and Pan F 2016 Chin. Phys. Lett. 33 078201 doi: 10.1088/0256-307X/33/7/078201

    CrossRef Google Scholar

    [7]
    Ng S S Y, Xing Y, and Tsui K L 2014 Appl. Energy 118 114 doi: 10.1016/j.apenergy.2013.12.020

    CrossRef Google Scholar

    [8]
    Ping P, Wang Q, Huang P, Sun J, and Chen C 2014 Appl. Energy 129 261 doi: 10.1016/j.apenergy.2014.04.092

    CrossRef Google Scholar

    [9]
    Siruvuri S V and Budarapu P 2020 J. Energy Storage 29 101377 doi: 10.1016/j.est.2020.101377

    CrossRef Google Scholar

    [10]
    Pan Y, Feng X, Zhang M, Han X, Lu L, and Ouyang M 2020 J. Cleaner Prod. 255 120277 doi: 10.1016/j.jclepro.2020.120277

    CrossRef Google Scholar

    [11]
    Li X, Xu J, Hong J, Tian J, and Tian Y 2021 Energy 214 118858 doi: 10.1016/j.energy.2020.118858

    CrossRef Google Scholar

    [12]
    Wang T, Tseng K J, Zhao J, and Wei Z 2014 Appl. Energy 134 229 doi: 10.1016/j.apenergy.2014.08.013

    CrossRef Google Scholar

    [13]
    Huang Q, Li X, Zhang G, Deng J, and Wang C 2021 Appl. Therm. Eng. 183 116151 doi: 10.1016/j.applthermaleng.2020.116151

    CrossRef Google Scholar

    [14]
    Luo X, Guo Q, Li X, Tao Z, Lei S, Liu J, Kang L, Zheng D, and Liu Z 2020 Renewable Energy 145 2046 doi: 10.1016/j.renene.2019.07.112

    CrossRef Google Scholar

    [15]
    Qian Z, Li Y, and Rao Z 2016 Energy Convers. Manage. 126 622 doi: 10.1016/j.enconman.2016.08.063

    CrossRef Google Scholar

    [16]
    Greco A, Cao D, Jiang X, and Yang H 2014 J. Power Sources 257 344 doi: 10.1016/j.jpowsour.2014.02.004

    CrossRef Google Scholar

    [17]
    Zhao R, Zhang S, Liu J, and Gu J 2015 J. Power Sources 299 557 doi: 10.1016/j.jpowsour.2015.09.001

    CrossRef Google Scholar

    [18]
    Lu M, Zhang X, Ji J, Xu X, and Zhang Y 2020 J. Energy Storage 27 101155 doi: 10.1016/j.est.2019.101155

    CrossRef Google Scholar

    [19]
    Zhao G, Wang X, Negnevitsky M, and Zhang H 2021 J. Power Sources 501 230001 doi: 10.1016/j.jpowsour.2021.230001

    CrossRef Google Scholar

    [20]
    Ye X, Zhao Y, and Quan Z 2018 Appl. Therm. Eng. 130 74 doi: 10.1016/j.applthermaleng.2017.10.141

    CrossRef Google Scholar

    [21]
    Shang Z, Qi H, Liu X, Ouyang C, and Wang Y 2019 Int. J. Heat Mass Transfer 130 33 doi: 10.1016/j.ijheatmasstransfer.2018.10.074

    CrossRef Google Scholar

    [22]
    Xie J, Ge Z, Zang M, and Wang S 2017 Appl. Therm. Eng. 126 583 doi: 10.1016/j.applthermaleng.2017.07.143

    CrossRef Google Scholar

    [23]
    Yang T, Yang N, Zhang X, and Li G 2016 Int. J. Thermal Sci. 108 132 doi: 10.1016/j.ijthermalsci.2016.05.009

    CrossRef Google Scholar

    [24]
    Saw L H, Ye Y, Tay A A, Chong W T, Kuan S H, and Yew M C 2016 Appl. Energy 177 783 doi: 10.1016/j.apenergy.2016.05.122

    CrossRef Google Scholar

    [25]
    Wang T, Tseng K, and Zhao J 2015 Appl. Therm. Eng. 90 521 doi: 10.1016/j.applthermaleng.2015.07.033

    CrossRef Google Scholar

    [26]
    Yang W, Zhou F, Zhou H, and Liu Y 2020 Int. J. Heat Mass Transfer 161 120307 doi: 10.1016/j.ijheatmasstransfer.2020.120307

    CrossRef Google Scholar

    [27]
    Behi H, Karimi D, Behi M, Ghanbarpour M, Jaguemont J, Sokkeh M A, Gandoman F H, Berecibar M, and Van Mierlo J 2020 Appl. Therm. Eng. 174 115280 doi: 10.1016/j.applthermaleng.2020.115280

    CrossRef Google Scholar

    [28]
    Chen D, Jiang J, Kim G H, Yang C, and Pesaran A 2016 Appl. Therm. Eng. 94 846 doi: 10.1016/j.applthermaleng.2015.10.015

    CrossRef Google Scholar

    [29]
    Kizilel R, Sabbah R, Selman J R, and Al-Hallaj S 2009 J. Power Sources 194 1105 doi: 10.1016/j.jpowsour.2009.06.074

    CrossRef Google Scholar

    [30]
    Xu X and He R 2013 J. Power Sources 240 33 doi: 10.1016/j.jpowsour.2013.03.004

    CrossRef Google Scholar

    [31]
    Park H 2013 J. Power Sources 239 30 doi: 10.1016/j.jpowsour.2013.03.102

    CrossRef Google Scholar

    [32]
    Deng C, Yao Z, Yu X, Yuan C, Li Z, and Su L 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific ITEC Asia-Pacific, 31 August–3 September 2014, Beijing, pp 1–4 doi: 10.1109/ITEC-AP.2014.6941008

    CrossRef Google Scholar

    [33]
    Liu H, Wei Z, He W, and Zhao J 2017 Energy Convers. Manage. 150 304 doi: 10.1016/j.enconman.2017.08.016

    CrossRef Google Scholar

    [34]
    Lian C, Janssen M, Liu H, and van Roij R 2020 Phys. Rev. Lett. 124 076001 doi: 10.1103/PhysRevLett.124.076001

    CrossRef Google Scholar

    [35]
    Doyle M, Fuller T F, and Newman J 1993 J. Electrochem. Soc. 140 1526 doi: 10.1149/1.2221597

    CrossRef Google Scholar

    [36]
    Aurbach D, Ein-Ely Y, and Zaban A 1994 J. Electrochem. Soc. 141 L1 doi: 10.1149/1.2054718

    CrossRef Google Scholar

    [37]
    Levi M D and Aurbach D 1997 J. Electroanal. Chem. 421 79 doi: 10.1016/S0022-07289604832-2

    CrossRef Google Scholar

    [38]
    Du J, Tao H, Yang J, Lian C, Lin S, and Liu H 2021 Chin. J. Chem. Eng. 31 33 doi: 10.1016/j.cjche.2020.09.041

    CrossRef Google Scholar

    [39]
    Yudha C S, Muzayanha S U, Widiyandari H, Iskandar F, Sutopo W, and Purwanto A 2019 Energies 12 1886 doi: 10.3390/en12101886

    CrossRef Google Scholar

    [40]
    Chung Y and Kim M S 2019 Energy Convers. Manage. 196 105 doi: 10.1016/j.enconman.2019.05.083

    CrossRef Google Scholar

    [41]
    Pesaran A A 2001 Battery Man 435 34

    Google Scholar

  • Cited by

    Periodical cited type(13)

    1. Arumugam, A., Buonomo, B., Nardini, S. et al. Numerical investigation on geometrical parameter effects of metal foams in liquid cooling efficiency of battery thermal management within phase change materials. Journal of Physics: Conference Series, 2025, 2940(1): 012019. DOI:10.1088/1742-6596/2940/1/012019
    2. Chen, Y., Tao, H., Li, B. et al. Modeling and Optimizing the Drying Process of Electrode Manufacturing for Lithium-Ion Batteries. Energy Technology, 2024, 12(11): 2401146. DOI:10.1002/ente.202401146
    3. Xu, L., Wang, S., Xi, L. et al. A Review of Thermal Management and Heat Transfer of Lithium-Ion Batteries. Energies, 2024, 17(16): 3873. DOI:10.3390/en17163873
    4. Alqaed, S., Mustafa, J., Mohammad Sajadi, S. et al. Enhancing thermal performance of cylindrical Li-ion battery packs: A 3D simulation with strategic phase change material integration and airflow control. Arabian Journal of Chemistry, 2024, 17(8): 105835. DOI:10.1016/j.arabjc.2024.105835
    5. Lazim, A.A., Ismael, M.A. Cooling of lithium-ion battery pack using different configurations of flexible baffled channels. Heat Transfer, 2024, 53(3): 1267-1291. DOI:10.1002/htj.22991
    6. Hwang, F.S., Confrey, T., Reidy, C. et al. Review of battery thermal management systems in electric vehicles. Renewable and Sustainable Energy Reviews, 2024. DOI:10.1016/j.rser.2023.114171
    7. Deng, J., Huang, Q., Li, X. et al. Influence mechanism of battery thermal management with flexible flame retardant composite phase change materials by temperature aging. Renewable Energy, 2024. DOI:10.1016/j.renene.2023.119922
    8. Chavan, S., Venkateswarlu, B., Liu, J. et al. Investigating the impact of fluid flow channels and cooling fluids on thermal management of lithium-ion battery: a simulation study. Journal of Thermal Analysis and Calorimetry, 2024, 149(4): 1629-1648. DOI:10.1007/s10973-023-12802-0
    9. Arumugam, A., Buonomo, B., Nardini, S. et al. OPTIMIZING LITHIUM-BASED BATTERY COOLING: A NUMERICAL SIMULATION OF PHASE CHANGE MATERIALS PARTIALLY FILLED WITH METAL FOAM BASED LIQUID COOLING TECHNIQUE. 2024. DOI:10.1115/IMECE2024-145703
    10. Zhang, Y., Feng, J., Qin, J. et al. Pathways to Next-Generation Fire-Safe Alkali-Ion Batteries. Advanced Science, 2023, 10(24): 2301056. DOI:10.1002/advs.202301056
    11. Zhou, D., Luo, Y., Bi, C. et al. Experimental and simulative investigation on battery thermal management system with structural optimization of composite phase change material. Journal of Energy Storage, 2023. DOI:10.1016/j.est.2023.106613
    12. Du, J., Yang, W., Huang, K. et al. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries | [复合相变材料/空冷复合式锂离子电池模块散热性能]. Huagong Xuebao/CIESC Journal, 2023, 74(2): 674-689. DOI:10.11949/0438-1157.20221068
    13. Huang, P., Tao, H., Yang, J. et al. Four stages of thermal effect coupled with ion-charge transports during the charging process of porous electrodes. AIChE Journal, 2022, 68(10): e17790. DOI:10.1002/aic.17790

    Other cited types(0)

Catalog

    Article views (1044) PDF downloads (800) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return