Typesetting math: 100%

Determination of the Range of Magnetic Interactions from the Relations between Magnon Eigenvalues at High-Symmetry k Points

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11834006, 12004170, and 12104215), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200326), and the Excellent Programme in Nanjing University. Xiangang Wan also acknowledges the support from the Tencent Foundation through the XPLORER PRIZE.
  • Received Date: September 21, 2021
  • Published Date: October 31, 2021
  • Magnetic exchange interactions (MEIs) define networks of coupled magnetic moments and lead to a surprisingly rich variety of their magnetic properties. Typically MEIs can be estimated by fitting experimental results. Unfortunately, how many MEIs need to be included in the fitting process for a material is unclear a priori, which limits the results obtained by these conventional methods. Based on linear spin-wave theory but without performing matrix diagonalization, we show that for a general quadratic spin Hamiltonian, there is a simple relation between the Fourier transform of MEIs and the sum of square of magnon energies (SSME). We further show that according to the real-space distance range within which MEIs are considered relevant, one can obtain the corresponding relationships between SSME in momentum space. By directly utilizing these characteristics and the experimental magnon energies at only a few high-symmetry k points in the Brillouin zone, one can obtain strong constraints about the range of exchange path beyond which MEIs can be safely neglected. Our methodology is also generally applicable for other Hamiltonian with quadratic Fermi or Boson operators.
  • Article Text

  • [1]
    Stöhr J and Siegmann H 2006 Magnetism from Fundamentals to Nanoscale Dynamics Berlin: Springer

    Google Scholar

    [2]
    Buschow K H J, Boer F R et al.. 2003 Physics of Magnetism and Magnetic Materials Berlin: Springer

    Google Scholar

    [3]
    White R M 2007 Quantum Theory of Magnetism: Magnetic Properties of Materials Berlin: Springer-Verlag

    Google Scholar

    [4]
    Lichtenstein A I, Anisimov V I, and Katsnelson M I 2003 Electronic Structure and Magnetism of Correlated Systems: Beyond LDA Berlin: Springer

    Google Scholar

    [5]
    Prabhakar A and Stancil D D 2009 Spin Waves: Theory and Applications Berlin: Springer vol 5

    Google Scholar

    [6]
    Krawczyk M and Grundler D 2014 J. Phys.: Condens. Matter 26 123202 doi: 10.1088/0953-8984/26/12/123202

    CrossRef Google Scholar

    [7]
    Kosevich A M, Ivanov B, and Kovalev A 1990 Phys. Rep. 194 117 doi: 10.1016/0370-15739090130-T

    CrossRef Google Scholar

    [8]
    Fogedby H C 1980 J. Phys. A 13 1467 doi: 10.1088/0305-4470/13/4/035

    CrossRef Google Scholar

    [9]
    Giamarchi T, Rüegg C, and Tchernyshyov O 2008 Nat. Phys. 4 198 doi: 10.1038/nphys893

    CrossRef Google Scholar

    [10]
    Nikuni T, Oshikawa M, Oosawa A, and Tanaka H 2000 Phys. Rev. Lett. 84 5868 doi: 10.1103/PhysRevLett.84.5868

    CrossRef Google Scholar

    [11]
    Demokritov S, Demidov V, Dzyapko O, Melkov G, Serga A, Hillebrands B, and Slavin A 2006 Nature 443 430 doi: 10.1038/nature05117

    CrossRef Google Scholar

    [12]
    Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, and Tokura Y 2010 Science 329 297 doi: 10.1126/science.1188260

    CrossRef Google Scholar

    [13]
    Chisnell R, Helton J S, Freedman D E, Singh D, Bewley R, Nocera D G, and Lee Y S 2015 Phys. Rev. Lett. 115 147201 doi: 10.1103/PhysRevLett.115.147201

    CrossRef Google Scholar

    [14]
    Kondo H, Akagi Y, and Katsura H 2019 Phys. Rev. B 99 041110 doi: 10.1103/PhysRevB.99.041110

    CrossRef Google Scholar

    [15]
    Mook A, Henk J, and Mertig I 2014 Phys. Rev. B 90 024412 doi: 10.1103/PhysRevB.90.024412

    CrossRef Google Scholar

    [16]
    Zhang L, Ren J, Wang J S, and Li B 2013 Phys. Rev. B 87 144101 doi: 10.1103/PhysRevB.87.144101

    CrossRef Google Scholar

    [17]
    Fransson J, Black-Schaffer A M, and Balatsky A V 2016 Phys. Rev. B 94 075401 doi: 10.1103/PhysRevB.94.075401

    CrossRef Google Scholar

    [18]
    Owerre S A 2017 J. Phys. Commun. 1 025007 doi: 10.1088/2399-6528/aa86d1

    CrossRef Google Scholar

    [19]
    Okuma N 2017 Phys. Rev. Lett. 119 107205 doi: 10.1103/PhysRevLett.119.107205

    CrossRef Google Scholar

    [20]
    Yao W, Li C, Wang L, Xue S, Dan Y, Iida K, Kamazawa K, Li K, Fang C, and Li Y 2018 Nat. Phys. 14 1011 doi: 10.1038/s41567-018-0213-x

    CrossRef Google Scholar

    [21]
    Bao S, Wang J, Wang W, Cai Z, Li S, Ma Z, Wang D, Ran K, Dong Z Y, Abernathy D L, Yu S L, Wan X, Li J X, and Wen J 2018 Nat. Commun. 9 2591 doi: 10.1038/s41467-018-05054-2

    CrossRef Google Scholar

    [22]
    Li F Y, Li Y D, Kim Y B, Balents L, Yu Y, and Chen G 2016 Nat. Commun. 7 12691 doi: 10.1038/ncomms12691

    CrossRef Google Scholar

    [23]
    Mook A, Henk J, and Mertig I 2016 Phys. Rev. Lett. 117 157204 doi: 10.1103/PhysRevLett.117.157204

    CrossRef Google Scholar

    [24]
    Su Y, Wang X S, and Wang X R 2017 Phys. Rev. B 95 224403 doi: 10.1103/PhysRevB.95.224403

    CrossRef Google Scholar

    [25]
    Serga A, Chumak A, and Hillebrands B 2010 J. Phys. D 43 264002 doi: 10.1088/0022-3727/43/26/264002

    CrossRef Google Scholar

    [26]
    Kruglyak V, Demokritov S, and Grundler D 2010 J. Phys. D 43 264001 doi: 10.1088/0022-3727/43/26/264001

    CrossRef Google Scholar

    [27]
    Chumak A, Vasyuchka V, Serga A, and Hillebrands B 2015 Nat. Phys. 11 453 doi: 10.1038/nphys3347

    CrossRef Google Scholar

    [28]
    Nikitov S A, Kalyabin D V, Lisenkov I V, Slavin A, Barabanenkov Y N, Osokin S A, Sadovnikov A V, Beginin E N, Morozova M A, Filimonov Y A et al.. 2015 Phys.-Usp. 58 1002 doi: 10.3367/UFNe.0185.201510m.1099

    CrossRef Google Scholar

    [29]
    Lenk B, Ulrichs H, Garbs F, and Münzenberg M 2011 Phys. Rep. 507 107 doi: 10.1016/j.physrep.2011.06.003

    CrossRef Google Scholar

    [30]
    Xiang H, Lee C, Koo H J, Gong X, and Whangbo M H 2013 Dalton Trans. 42 823 doi: 10.1039/C2DT31662E

    CrossRef Google Scholar

    [31]
    Liechtenstein A I, Katsnelson M I, Antropov V P, and Gubanov V A 1987 J. Magn. Magn. Mater. 67 65 doi: 10.1016/0304-88538790721-9

    CrossRef Google Scholar

    [32]
    Bruno P 2003 Phys. Rev. Lett. 90 087205 doi: 10.1103/PhysRevLett.90.087205

    CrossRef Google Scholar

    [33]
    Wan X, Yin Q, and Savrasov S Y 2006 Phys. Rev. Lett. 97 266403 doi: 10.1103/PhysRevLett.97.266403

    CrossRef Google Scholar

    [34]
    Ebert H, Koedderitzsch D, and Minar J 2011 Rep. Prog. Phys. 74 096501 doi: 10.1088/0034-4885/74/9/096501

    CrossRef Google Scholar

    [35]
    Secchi A, Lichtenstein A I, and Katsnelson M I 2015 Ann. Phys. 360 61 doi: 10.1016/j.aop.2015.05.002

    CrossRef Google Scholar

    [36]
    Rosengaard N M and Johansson B 1997 Phys. Rev. B 55 14975 doi: 10.1103/PhysRevB.55.14975

    CrossRef Google Scholar

    [37]
    Halilov S, Eschrig H, Perlov A, and Oppeneer P 1998 Phys. Rev. B 58 293 doi: 10.1103/PhysRevB.58.293

    CrossRef Google Scholar

    [38]
    Paddison J A M 2020 Phys. Rev. Lett. 125 247202 doi: 10.1103/PhysRevLett.125.247202

    CrossRef Google Scholar

    [39]
    Anisimov V, Aryasetiawan F, and Lichtenstein A 1997 J. Phys.: Condens. Matter 9 767 doi: 10.1088/0953-8984/9/4/002

    CrossRef Google Scholar

    [40]
    Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O, and Marianetti C A 2006 Rev. Mod. Phys. 78 865 doi: 10.1103/RevModPhys.78.865

    CrossRef Google Scholar

    [41]
    Hohenberg P C and Brinkman W F 1974 Phys. Rev. B 10 128 doi: 10.1103/PhysRevB.10.128

    CrossRef Google Scholar

    [42]
    Kitaev A 2006 Ann. Phys. 321 2 doi: 10.1016/j.aop.2005.10.005

    CrossRef Google Scholar

    [43]
    Gardner J S, Gingras M J, and Greedan J E 2010 Rev. Mod. Phys. 82 53 doi: 10.1103/RevModPhys.82.53

    CrossRef Google Scholar

    [44]
    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241 doi: 10.1016/0022-36975890076-3

    CrossRef Google Scholar

    [45]
    Moriya T 1960 Phys. Rev. 120 91 doi: 10.1103/PhysRev.120.91

    CrossRef Google Scholar

    [46]
    Kotliar G and Sompolinsky H 1984 Phys. Rev. Lett. 53 1751 doi: 10.1103/PhysRevLett.53.1751

    CrossRef Google Scholar

    [47]
    Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899 doi: 10.1038/nnano.2013.243

    CrossRef Google Scholar

    [48]
    Winter S M, Tsirlin A A, Daghofer M, van den Brink J, Singh Y, Gegenwart P, and Valentı́ R 2017 J. Phys.: Condens. Matter 29 493002 doi: 10.1088/1361-648X/aa8cf5

    CrossRef Google Scholar

    [49]
    Santini P, Carretta S, Amoretti G, Caciuffo R, Magnani N, and Lander G H 2009 Rev. Mod. Phys. 81 807 doi: 10.1103/RevModPhys.81.807

    CrossRef Google Scholar

    [50]
    Kugel K and Khomskii D 1982 Sov. Phys. Usp. 25 231 doi: 10.1070/PU1982v025n04ABEH004537

    CrossRef Google Scholar

  • Related Articles

    [1]X. F. Liu, Y. F. Fu, W. Q. Yu, J. F. Yu, Z. Y. Xie. Variational Corner Transfer Matrix Renormalization Group Method for Classical Statistical Models [J]. Chin. Phys. Lett., 2022, 39(6): 067502. doi: 10.1088/0256-307X/39/6/067502
    [2]TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation [J]. Chin. Phys. Lett., 2009, 26(6): 060501. doi: 10.1088/0256-307X/26/6/060501
    [3]LIU Zheng-Feng, WANG Xiao-Hong. Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique [J]. Chin. Phys. Lett., 2008, 25(2): 604-607.
    [4]LIN Ming-Xi, QI Sheng-Wen, LIU Yu-Liang. Influence of Gauge Fluctuation on Electron Pairing Order Parameter and Correlation Functions of a Two-Dimensional System [J]. Chin. Phys. Lett., 2006, 23(11): 3076-3079.
    [5]WU Xin-Tian. Two-Dimensional Saddle Point Equation of Ginzburg--Landau Hamiltonian for the Diluted Ising Model [J]. Chin. Phys. Lett., 2006, 23(2): 305-308.
    [6]SONG Bo, WANG Yu-Peng. The Green Function Approach to the Two-Dimensional t-J model [J]. Chin. Phys. Lett., 2003, 20(2): 287-289.
    [7]SUN Gang, CHU Qian-Jin. Phase Diagram of the 2-Dimensional Ising Model with DipolarInteraction [J]. Chin. Phys. Lett., 2001, 18(4): 491-494.
    [8]YAN Xiao-hong, ZHANG Li-de, DUAN Zhu-ping, YANG Qi-bin. Renormalization Group Approach on Nanostructured Systems [J]. Chin. Phys. Lett., 1997, 14(4): 291-294.
    [9]YAN Xiaohong, YOU Jianqiang, YAN Jiaren, ZHONG Jianxin. Renormalization Group on the Aperiodic Hamiltonian [J]. Chin. Phys. Lett., 1992, 9(11): 623-625.
    [10]TAN Weichao, YANG Chuliang. RENORMALIZATION GROUP METHOD FOR CALCULATING THE LOCALIZATION LENGTH OF COUPLED DISORDERED CHAINS [J]. Chin. Phys. Lett., 1989, 6(5): 213-216.

Catalog

    Article views (764) PDF downloads (506) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return