Typesetting math: 100%

Effect of Electron Correlation and Breit Interaction on Energies, Oscillator Strengths, and Transition Rates for Low-Lying States of Helium

Funds: Supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300), and the National Natural Science Foundation of China (Grant Nos. 11774344 and 11474033).
  • Received Date: July 27, 2021
  • Published Date: October 31, 2021
  • The transition energies, E1 transitional oscillator strengths of the spin-allowed as well as the spin-forbidden and the corresponding transition rates, and complete M1, E2, M2 forbidden transition rates for 1s2, 1s2s, and 1s2p states of He I, are investigated using the multi-configuration Dirac–Hartree–Fock method. In the subsequent relativistic configuration interaction computations, the Breit interaction and the QED effect are considered as perturbation, separately. Our transition energies, oscillator strengths, and transition rates are in good agreement with the experimental and other theoretical results. As a result, the QED effect is not important for helium atoms, however, the effect of the Breit interaction plays a significant role in the transition energies, the oscillator strengths and transition rates.
  • Article Text

  • [1]
    Träbert E 2014 Phys. Scr. 89 114003 doi: 10.1088/0031-8949/89/11/114003

    CrossRef Google Scholar

    [2]
    Zhao Y, Deng B, Xiong G, Hu Z M, Wei M X, Zhu T, Shang W L, Li J, Yang G H, Zhang J Y, and Yang J M 2011 Chin. Phys. Lett. 28 065201 doi: 10.1088/0256-307X/28/6/065201

    CrossRef Google Scholar

    [3]
    Woodworth J R and Moos H W 1975 Phys. Rev. A 12 2455 doi: 10.1103/PhysRevA.12.2455

    CrossRef Google Scholar

    [4]
    Johnson W R, Plante D R, and Sapirstein J 1995 Adv. At. Mol. Opt. Phys. 35 255 doi: 10.1016/S1049-250X0860165-2

    CrossRef Google Scholar

    [5]
    Baklanov E V and Denisov A 1997 Quantum Electron. 27 465 doi: 10.1070/QE1997v027n05ABEH000964

    CrossRef Google Scholar

    [6]
    Lach G and Pachucki K 2001 Phys. Rev. A 64 042510 doi: 10.1103/PhysRevA.64.042510

    CrossRef Google Scholar

    [7]
    Drake G W F and Morton D C 2007 Astrophys. J. Suppl. Ser. 170 251 doi: 10.1086/512239

    CrossRef Google Scholar

    [8]
    Rooij R V, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, and Vassen W 2011 Science 333 196 doi: 10.1126/science.1205163

    CrossRef Google Scholar

    [9]
    Głowacki L and Migdałek J 2014 Phys. Rev. A 89 042503 doi: 10.1103/PhysRevA.89.042503

    CrossRef Google Scholar

    [10]
    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, and Hu S M 2017 Phys. Rev. Lett. 119 263002 doi: 10.1103/PhysRevLett.119.263002

    CrossRef Google Scholar

    [11]
    Thomas K F, Ross J A, Henson B M, Shin D K, Baldwin K G H, Hodgman S S, and Truscott A G 2020 Phys. Rev. Lett. 125 013002 doi: 10.1103/PhysRevLett.125.013002

    CrossRef Google Scholar

    [12]
    Lewis S A, Pichanick F M J, and Hughes V W 1970 Phys. Rev. A 2 86 doi: 10.1103/PhysRevA.2.86

    CrossRef Google Scholar

    [13]
    Feinberg G and Sucher J 1971 Phys. Rev. Lett. 26 681 doi: 10.1103/PhysRevLett.26.681

    CrossRef Google Scholar

    [14]
    Schad T A 2018 Astrophys. J. 865 31 doi: 10.3847/1538-4357/aad962

    CrossRef Google Scholar

    [15]
    Zhang D H, Xie L Y, Jiang J, and Dong C Z 2019 Chin. Phys. Lett. 36 083401 doi: 10.1088/0256-307X/36/8/083401

    CrossRef Google Scholar

    [16]
    Li F, Yang Y J, Chen J, Liu X J, Wei Z Y, and Wang B B 2020 Chin. Phys. Lett. 37 113201 doi: 10.1088/0256-307X/37/11/113201

    CrossRef Google Scholar

    [17]
    Antognin A, Nez F, Schuhmann K, and Amaro F D 2013 Science 339 417 doi: 10.1126/science.1230016

    CrossRef Google Scholar

    [18]
    Bezginov N, Valdez T, Horbatsch M, Marsman A, Vutha A C, and Hessels E A 2019 Science 365 1007 doi: 10.1126/science.aau7807

    CrossRef Google Scholar

    [19]
    Hodgman S S, Dall R G, Byron L J, Baldwin K G, Buckman S J, and Truscott A G 2009 Phys. Rev. Lett. 103 053002 doi: 10.1103/PhysRevLett.103.053002

    CrossRef Google Scholar

    [20]
    Pachucki K 2006 Phys. Rev. Lett. 97 013002 doi: 10.1103/PhysRevLett.97.013002

    CrossRef Google Scholar

    [21]
    Patkóš V, Yerokhin V A, and Pachucki K 2021 Phys. Rev. A 103 042809 doi: 10.1103/PhysRevA.103.042809

    CrossRef Google Scholar

    [22]
    Zhang Y H, Tang L Y, Zhang X Z, and Shi T Y 2016 Phys. Rev. A 93 052516 doi: 10.1103/PhysRevA.93.052516

    CrossRef Google Scholar

    [23]
    Yang S J, Mei X S, Shi T Y, and Qiao H X 2017 Phys. Rev. A 95 062505 doi: 10.1103/PhysRevA.95.062505

    CrossRef Google Scholar

    [24]
    Pachucki K and Yerokhin V A 2009 Phys. Rev. A 79 062516 doi: 10.1103/PhysRevA.79.062516

    CrossRef Google Scholar

    [25]
    Pachucki K and Yerokhin V A 2010 Phys. Rev. Lett. 104 070403 doi: 10.1103/PhysRevLett.104.070403

    CrossRef Google Scholar

    [26]
    Wan J J 2015 Chin. Phys. Lett. 32 023102 doi: 10.1088/0256-307X/32/2/023102

    CrossRef Google Scholar

    [27]
    Morton D C, Moffatt P, and Drake G W F 2011 Can. J. Phys. 89 129 doi: 10.1139/P10-067

    CrossRef Google Scholar

    [28]
    Mitroy J and Tang L Y 2013 Phys. Rev. A 88 052515 doi: 10.1103/PhysRevA.88.052515

    CrossRef Google Scholar

    [29]
    Morton D C, Schulhoff E E, and Drake G W F 2015 J. Phys. B 48 235001 doi: 10.1088/0953-4075/48/23/235001

    CrossRef Google Scholar

    [30]
    Głowacki L 2020 At. Data Nucl. Data Tables 133 101344 doi: 10.1016/j.adt.2020.101344

    CrossRef Google Scholar

    [31]
    Smiciklas M and Shiner D 2010 Phys. Rev. Lett. 105 123001 doi: 10.1103/PhysRevLett.105.123001

    CrossRef Google Scholar

    [32]
    Kato K, Skinner T D G, and Hessels E A 2018 Phys. Rev. Lett. 121 143002 doi: 10.1103/PhysRevLett.121.143002

    CrossRef Google Scholar

    [33]
    Notermans R P and Vassen W 2014 Phys. Rev. Lett. 112 253002 doi: 10.1103/PhysRevLett.112.253002

    CrossRef Google Scholar

    [34]
    Qing B, Chen S H, Gao X, and Li J M 2008 Chin. Phys. Lett. 25 2448 doi: 10.1088/0256-307X/25/7/032

    CrossRef Google Scholar

    [35]
    Lin C D, Johnson W R, and Dalgarno A 1977 Phys. Rev. A 15 154 doi: 10.1103/PhysRevA.15.154

    CrossRef Google Scholar

    [36]
    Indelicato P 1996 Phys. Rev. Lett. 77 3323 doi: 10.1103/PhysRevLett.77.3323

    CrossRef Google Scholar

    [37]
    Drake G W F 1971 Phys. Rev. A 3 908 doi: 10.1103/PhysRevA.3.908

    CrossRef Google Scholar

    [38]
    Jönsson P, He X, Froese F C, and Grant I P 2007 Comput. Phys. Commun. 177 597 doi: 10.1016/j.cpc.2007.06.002

    CrossRef Google Scholar

    [39]
    Froese F C, Gaigalas G, Jönsson P, and Bieroń J 2019 Comput. Phys. Commun. 237 184 doi: 10.1016/j.cpc.2018.10.032

    CrossRef Google Scholar

    [40]
    Jönsson P, Gaigalas G, Bieroń J, Fischer C F, and Grant I P 2013 Comput. Phys. Commun. 184 2197 doi: 10.1016/j.cpc.2013.02.016

    CrossRef Google Scholar

    [41]
    Khatri I, Goyal A, Aggarwal S, Singh A K, and Man M 2016 Radiat. Phys. Chem. 123 46 doi: 10.1016/j.radphyschem.2016.02.017

    CrossRef Google Scholar

    [42]
    Radžiūtė L, Gaidamauskas E, Gaigalas G, Li J G, Dong C Z, and Per J 2015 Chin. Phys. B 24 043103 doi: 10.1088/1674-1056/24/4/043103

    CrossRef Google Scholar

    [43]
    Jönsson P and Bieroń J 2010 J. Phys. B 43 074023 doi: 10.1088/0953-4075/43/7/074023

    CrossRef Google Scholar

    [44]
    Johnson W R, Savukov I M, Safronova U I, and Dalgarno A 2002 Astrophys. J. Suppl. Ser. 141 543 doi: 10.1086/340547

    CrossRef Google Scholar

    [45]
    Aggarwal K M, Kato T, Keenan F P, and Murakami I 2011 Phys. Scr. 83 015302 doi: 10.1088/0031-8949/83/01/015302

    CrossRef Google Scholar

    [46]
    Zhou F, Qu Y, Li J, and Wang J 2015 Phys. Rev. A 92 052505 doi: 10.1103/PhysRevA.92.052505

    CrossRef Google Scholar

    [47]
    Li J, Jönsson P, Godefroid M, Dong C, and Gaigalas G 2012 Phys. Rev. A 86 052523 doi: 10.1103/PhysRevA.86.052523

    CrossRef Google Scholar

    [48]
    Fano U 1965 Phys. Rev. 140 A67 doi: 10.1103/PhysRev.140.A67

    CrossRef Google Scholar

    [49]
    Olsen J, Godefroid M R, Jonsson P, Malmqvist P, and Fischer C F 1995 Phys. Rev. E 52 4499 doi: 10.1103/PhysRevE.52.4499

    CrossRef Google Scholar

    [50]
    Nahar S N, Eissner W, Chen G X, and Pradhan A K 2003 Astron. & Astrophys. 408 789 doi: 10.1051/0004-6361:20030945

    CrossRef Google Scholar

    [51]
    Kelleher D E and Podobedova L I 2008 J. Phys. Chem. Ref. Data 37 267 doi: 10.1063/1.2735328

    CrossRef Google Scholar

    [52]
    Kaur M, Dar D F, Sahoo B K, and Arora B 2021 At. Data Nucl. Data Tables 137 101381 doi: 10.1016/j.adt.2020.101381

    CrossRef Google Scholar

    [53]
    Kramida A, Ralchenko Y, Reader J, and Team N A 2020 NIST Atomic Spectra Database ver. 5.8 Gaithersburg, MD: National Institute of Standards and Technology doi: 10.18434/T4W30F

    CrossRef Google Scholar

    [54]
    Zhang T, Yan Z C, and Drake G W F 1996 Phys. Rev. Lett. 77 1715 doi: 10.1103/PhysRevLett.77.1715

    CrossRef Google Scholar

    [55]
    Sims J S and Hagstrom S A 2014 J. Chem. Phys. 140 224312 doi: 10.1063/1.4881639

    CrossRef Google Scholar

    [56]
    Jiao L G, Zan L R, Zhu L, Zhang Y Z, and Ho Y K 2019 Phys. Rev. A 100 022509 doi: 10.1103/PhysRevA.100.022509

    CrossRef Google Scholar

    [57]
    Bai Z D, Zhong Z X, Yan Z C, and Shi T Y 2021 Chin. Phys. B 30 023101 doi: 10.1088/1674-1056/abc156

    CrossRef Google Scholar

    [58]
    He X K, Liu J P, Zhang X, Shen Y, and Zou H X 2018 Chin. Phys. B 27 83102 doi: 10.1088/1674-1056/27/8/083102

    CrossRef Google Scholar

    [59]
    Ynnerman A and Fischer C F 1995 Phys. Rev. A 51 2020 doi: 10.1103/PhysRevA.51.2020

    CrossRef Google Scholar

    [60]
    Jönsson P and Fischer C F 1998 Phys. Rev. A 57 4967 doi: 10.1103/PhysRevA.57.4967

    CrossRef Google Scholar

    [61]
    Chen M, Cheng K, and Johnson W 2001 Phys. Rev. A 64 042507 doi: 10.1103/PhysRevA.64.042507

    CrossRef Google Scholar

  • Related Articles

    [1]LI Tong-Zhong. New Vacuum State of the Electromagnetic Field-Matter CouplingSystem and the Physical Interpretation of Casimir Effect [J]. Chin. Phys. Lett., 2004, 21(1): 73-75.
    [2]ZHU Zong-Hong. Cosmic Wave Functions with the Brans-Dicke Theory [J]. Chin. Phys. Lett., 2000, 17(11): 856-858.
    [3]HE Feng, LIU liao. A New Traversable Wormhole Solution in Vacuum Brans-Dicke Theory [J]. Chin. Phys. Lett., 1999, 16(6): 394-396.
    [4]ZHAO Feng, LIU Liao. Traversable Lorentzian Wormholes in Brans-Dicke’s and Induced Gravity Theories [J]. Chin. Phys. Lett., 1996, 13(12): 881-884.
    [5]XIAO Xing-guo, ZHU Jian-yang. Wormhole Solution in Vacuum Brans-Dicke Theory with Cosmological Constant [J]. Chin. Phys. Lett., 1996, 13(6): 405-408.
    [6]SHEN Yougen. Quantum Field Theory of the Universe in the Induced Gravity [J]. Chin. Phys. Lett., 1995, 12(8): 509-512.
    [7]ZHANG Yuan Zhong. Newtonian Limit in Generalized Brans-Dicke Theory [J]. Chin. Phys. Lett., 1993, 10(9): 513-515.
    [8]ZHU Zonghong. Boundary Conditions in Quantum Cosmology in the Brans-Dicke’s Theory [J]. Chin. Phys. Lett., 1992, 9(5): 273-276.
    [9]XIANG Yingming, LIU Liao. Third Quantization of a Solvable Model in Quantum Cosmology in Brans-Dicke Theory [J]. Chin. Phys. Lett., 1991, 8(1): 52-55.
    [10]ZHU zonghong, HUANG Chaoguang, LIU Liao. A SOLVABLE MODEL IN QUANTUM COSMOLOGY IN THE BRANS-DICKES THEORY [J]. Chin. Phys. Lett., 1990, 7(10): 477-480.

Catalog

    Article views (287) PDF downloads (190) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return