Improved Superconducting Qubit State Readout by Path Interference

Funds: Supported by the Beijing Academy of Quantum Information Science, the Frontier Science Center for Quantum Information of the Ministry of Education of China through the Tsinghua University Initiative Scientific Research Program, the National Natural Science Foundation of China (Grant No. 11874235), the National Key Research and Development Program of China (Grant Nos. 2016YFA0301902 and 2020YFA0309500), Y.K.W. acknowledges support from Shuimu Tsinghua Scholar Program and the International Postdoctoral Exchange Fellowship Program.
  • Received Date: September 23, 2021
  • Published Date: October 31, 2021
  • High fidelity single shot qubit state readout is essential for many quantum information processing protocols. In superconducting quantum circuit, the qubit state is usually determined by detecting the dispersive frequency shift of a microwave cavity from either transmission or reflection. We demonstrate the use of constructive interference between the transmitted and reflected signal to optimize the qubit state readout, with which we find a better resolved state discrimination and an improved qubit readout fidelity. As a simple and convenient approach, our scheme can be combined with other qubit readout methods based on the discrimination of cavity photon states to further improve the qubit state readout.
  • Article Text

  • [1]
    [2]
    DiVincenzo D P 2009 Phys. Scr. T137 014020 doi: 10.1088/0031-8949/2009/T137/014020

    CrossRef Google Scholar

    [3]
    Steffen L, Salathe Y, Oppliger M, Kurpiers P, Baur M, Lang C, Eichler C, Puebla-Hellmann G, Fedorov A, and Wallraff A 2013 Nature 500 319 doi: 10.1038/nature12422

    CrossRef Google Scholar

    [4]
    Barends R, Kelly J, Megrant A et al.. 2014 Nature 508 500 doi: 10.1038/nature13171

    CrossRef Google Scholar

    [5]
    Kelly J, Barends R, Fowler A G et al.. 2015 Nature 519 66 doi: 10.1038/nature14270

    CrossRef Google Scholar

    [6]
    Johnson J E, Macklin C, Slichter D H, Vijay R, Weingarten E B, Clarke J, and Siddiqi I 2012 Phys. Rev. Lett. 109 050506 doi: 10.1103/PhysRevLett.109.050506

    CrossRef Google Scholar

    [7]
    Ristè D, van Leeuwen J G, Ku H S, Lehnert K W, and DiCarlo L 2012 Phys. Rev. Lett. 109 050507 doi: 10.1103/PhysRevLett.109.050507

    CrossRef Google Scholar

    [8]
    Geerlings K, Leghtas Z, Pop I M, Shankar S, Frunzio L, Schoelkopf R J, Mirrahimi M, and Devoret M H 2013 Phys. Rev. Lett. 110 120501 doi: 10.1103/PhysRevLett.110.120501

    CrossRef Google Scholar

    [9]
    Magnard P, Kurpiers P, Royer B, Walter T, Besse J C, Gasparinetti S, Pechal M, Heinsoo J, Storz S, Blais A, and Wallraff A 2018 Phys. Rev. Lett. 121 060502 doi: 10.1103/PhysRevLett.121.060502

    CrossRef Google Scholar

    [10]
    Arute F, Arya K, Babbush R et al.. 2019 Nature 574 505 doi: 10.1038/s41586-019-1666-5

    CrossRef Google Scholar

    [11]
    Kandala A, Temme K, Córcoles A D, Mezzacapo A, Chow J M, and Gambetta J M 2019 Nature 567 491 doi: 10.1038/s41586-019-1040-7

    CrossRef Google Scholar

    [12]
    Tannu S S and Qureshi M K 2019 Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS '19 Association for Computing Machinery, New York, NY, USA pp 987–999 doi: 10.1145/3297858.3304007

    CrossRef Google Scholar

    [13]
    Tannu S S and Qureshi M K 2019 Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO '52 Association for Computing Machinery, New York, NY, USA pp 279–290

    Google Scholar

    [14]
    Lupaşcu A, Saito S, Picot T, de Groot P C, Harmans C J P M, and Mooij J E 2007 Nat. Phys. 3 119 doi: 10.1038/nphys509

    CrossRef Google Scholar

    [15]
    Picot T, Schouten R, Harmans C J P M, and Mooij J E 2010 Phys. Rev. Lett. 105 040506 doi: 10.1103/PhysRevLett.105.040506

    CrossRef Google Scholar

    [16]
    Nakajima T, Noiri A, Yoneda J, Delbecq M R, Stano P, Otsuka T, Takeda K, Amaha S, Allison G, Kawasaki K, Ludwig A, Wieck A D, Loss D, and Tarucha S 2019 Nat. Nanotechnol. 14 555 doi: 10.1038/s41565-019-0426-x

    CrossRef Google Scholar

    [17]
    Raha M, Chen S, Phenicie C M, Ourari S, Dibos A M, and Thompson J D 2020 Nat. Commun. 11 1605 doi: 10.1038/s41467-020-15138-7

    CrossRef Google Scholar

    [18]
    Ristè D, Poletto S, Huang M Z, Bruno A, Vesterinen V, Saira O P, and DiCarlo L 2015 Nat. Commun. 6 6983 doi: 10.1038/ncomms7983

    CrossRef Google Scholar

    [19]
    Hacohen-Gourgy S, Martin L S, Flurin E, Ramasesh V V, Whaley K B, and Siddiqi I 2016 Nature 538 491 doi: 10.1038/nature19762

    CrossRef Google Scholar

    [20]
    Blais A, Huang R S, Wallraff A, Girvin S M, and Schoelkopf R J 2004 Phys. Rev. A 69 062320 doi: 10.1103/PhysRevA.69.062320

    CrossRef Google Scholar

    [21]
    Mallet F, Ong F R, Palacios-Laloy A, Nguyen F, Bertet P, Vion D, and Esteve D 2009 Nat. Phys. 5 791 doi: 10.1038/nphys1400

    CrossRef Google Scholar

    [22]
    Walter T, Kurpiers P, Gasparinetti S et al.. 2017 Phys. Rev. Appl. 7 054020 doi: 10.1103/PhysRevApplied.7.054020

    CrossRef Google Scholar

    [23]
    Wang X, Miranowicz A, and Nori F 2019 Phys. Rev. Appl. 12 064037 doi: 10.1103/PhysRevApplied.12.064037

    CrossRef Google Scholar

    [24]
    Clerk A, Girvin S, and Stone A D 2003 Phys. Rev. B 67 165324 doi: 10.1103/PhysRevB.67.165324

    CrossRef Google Scholar

    [25]
    Clerk A A, Devoret M H, Girvin S M, Marquardt F, and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155 doi: 10.1103/RevModPhys.82.1155

    CrossRef Google Scholar

    [26]
    Blais A, Grimsmo A L, Girvin S M, and Wallraff A 2021 Rev. Mod. Phys. 93 025005 doi: 10.1103/RevModPhys.93.025005

    CrossRef Google Scholar

    [27]
    Ikonen J, Goetz J, Ilves J et al.. 2019 Phys. Rev. Lett. 122 080503 doi: 10.1103/PhysRevLett.122.080503

    CrossRef Google Scholar

    [28]
    Touzard S, Kou A, Frattini N E et al.. 2019 Phys. Rev. Lett. 122 080502 doi: 10.1103/PhysRevLett.122.080502

    CrossRef Google Scholar

    [29]
    Reed M D, DiCarlo L, Johnson B R et al.. 2010 Phys. Rev. Lett. 105 173601 doi: 10.1103/PhysRevLett.105.173601

    CrossRef Google Scholar

    [30]
    Boissonneault M, Gambetta J M, and Blais A 2010 Phys. Rev. Lett. 105 100504 doi: 10.1103/PhysRevLett.105.100504

    CrossRef Google Scholar

    [31]
    Gao J and Zmuidzinas J 2008 The Physics of Superconducting Microwave Resonators, CIT theses California Institute of Technology

    Google Scholar

    [32]
    Bradley R 2018 Proceedings of the 2nd International Workshop Part of the Springer Proceedings in Physics book series, SPPHY vol 211 p 39 doi: 10.1007/978-3-319-92726-8_4

    CrossRef Google Scholar

    [33]
    Kokkoniemi R, Ollikainen T, Lake R E et al.. 2017 Sci. Rep. 7 14713 doi: 10.1038/s41598-017-15190-2

    CrossRef Google Scholar

    [34]
    Zhang J, Li T, Kokkoniemi R et al.. 2020 AIP Adv. 10 065128 doi: 10.1063/5.0006499

    CrossRef Google Scholar

    [35]
    Naaman O, Strong J A, Ferguson D G et al.. 2017 J. Appl. Phys. 121 073904 doi: 10.1063/1.4976809

    CrossRef Google Scholar

    [36]
    Eder P, Ramos T, Goetz J et al.. 2018 Supercond. Sci. Technol. 31 115002 doi: 10.1088/1361-6668/aad8f4

    CrossRef Google Scholar

    [37]
    Pogorzalek S, Fedorov K G, Xu M et al.. 2019 Nat. Commun. 10 2604 doi: 10.1038/s41467-019-10727-7

    CrossRef Google Scholar

    [38]
    Probst S, Song F B, Bushev P A et al.. 2015 Rev. Sci. Instrum. 86 024706 doi: 10.1063/1.4907935

    CrossRef Google Scholar

    [39]
    Krantz P, Bengtsson A, Simoen M et al.. 2016 Nat. Commun. 7 11417 doi: 10.1038/ncomms11417

    CrossRef Google Scholar

    [40]
    Krantz P, Kjaergaard M, Yan F et al.. 2019 Appl. Phys. Rev. 6 021318 doi: 10.1063/1.5089550

    CrossRef Google Scholar

    [41]
    Kjaergaard M, Schwartz M E, Braumüller J et al.. 2020 Annu. Rev. Condens. Matter Phys. 11 369 doi: 10.1146/annurev-conmatphys-031119-050605

    CrossRef Google Scholar

    [42]
    Place A P M, Rodgers L V H, Mundada P et al.. 2021 Nat. Commun. 12 1779 doi: 10.1038/s41467-021-22030-5

    CrossRef Google Scholar

  • Related Articles

    [1]CAO Jing, ZHAO A-Meng, SUN Wei-Min, ZONG Hong-Shi. An Improved Quasi-particle Model Framework for Quark-Gluon Plasma from the Path Integral Formalism [J]. Chin. Phys. Lett., 2012, 29(6): 061201. doi: 10.1088/0256-307X/29/6/061201
    [2]TIAN Li-Jun, QIN Li-Guo, ZHANG Hong-Biao. Entanglement of Two-Superconducting-Qubit System Coupled with a Fixed Capacitor [J]. Chin. Phys. Lett., 2011, 28(5): 050308. doi: 10.1088/0256-307X/28/5/050308
    [3]Aditya M. Vora. Superconducting State Parameters of NbxTayMoz Superconductors [J]. Chin. Phys. Lett., 2010, 27(2): 026102. doi: 10.1088/0256-307X/27/2/026102
    [4]XIA Yan, SONG Jie, SONG He-Shan. Robust Implementation of a Nonlocal N-Qubit Phase Gate by Interference of Polarized Photons [J]. Chin. Phys. Lett., 2008, 25(9): 3150-3153.
    [5]ZHENG An-Shou, SHEN Xiao-Fang, LIU Ji-Bing, BI Jie, DU Qiu-Jiao. Preparation of W State with Superconducting Quantum-Interference Devices in a Cavity via Adiabatic Passage [J]. Chin. Phys. Lett., 2008, 25(4): 1195-1197.
    [6]MA Chi, ZHANG Shi-Jun, HE Juan, YE Liu. Implementation of a Controlled-NOT Gate Using Superconducting Quantum Interference Devices [J]. Chin. Phys. Lett., 2008, 25(2): 383-385.
    [7]ZHENG An-Shou, LIU Ji-Bing, XIANG Dong, LIU Cui-Lan, YUAN Hong. An Efficient Scheme for Implementing an N-Qubit Toffoli Gate with Superconducting Quantum-Interference Devices in Cavity QED [J]. Chin. Phys. Lett., 2007, 24(9): 2489-2492.
    [8]ZHENG An-Shou, WAN Zhen-Zhu, BI Jie. Realization of Greenberg--Horne--Zeilinger (GHZ) and W Entangled States with Multiple Superconducting Quantum-Interference Device Qubits in Cavity QED [J]. Chin. Phys. Lett., 2006, 23(12): 3267-3270.
    [9]LIU Xiao-Nan, SHAO Bin, ZOU Jian. Influence of Intrinsic Decoherence on Entanglement of Superconducting Charge Qubit in a Resonant Cavity [J]. Chin. Phys. Lett., 2005, 22(12): 2997-3000.
    [10]PAN Hai-Zhong, KUANG Le-Man. Thermal Entanglement in Superconducting Quantum-Interference-Device Qubits Coupled to Cavity Field [J]. Chin. Phys. Lett., 2004, 21(3): 424-427.
  • Cited by

    Periodical cited type(3)

    1. Zhang, Y., Yang, C., Su, Q. et al. Quantum Voting Machine Encoded with Microwave Photons. Chinese Physics Letters, 2024, 41(7): 070302. DOI:10.1088/0256-307X/41/7/070302
    2. Yan, H., Wu, X., Lingenfelter, A. et al. Broadband bandpass Purcell filter for circuit quantum electrodynamics. Applied Physics Letters, 2023, 123(13): 134001. DOI:10.1063/5.0161893
    3. Chen, J., Wu, C., Fan, J. et al. Characterization of topological phase of superlattices in superconducting circuits. Chinese Physics B, 2022, 31(8): 088501. DOI:10.1088/1674-1056/ac5612

    Other cited types(0)

Catalog

    Article views (412) PDF downloads (435) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return