Improved Superconducting Qubit State Readout by Path Interference
-
Abstract
High fidelity single shot qubit state readout is essential for many quantum information processing protocols. In superconducting quantum circuit, the qubit state is usually determined by detecting the dispersive frequency shift of a microwave cavity from either transmission or reflection. We demonstrate the use of constructive interference between the transmitted and reflected signal to optimize the qubit state readout, with which we find a better resolved state discrimination and an improved qubit readout fidelity. As a simple and convenient approach, our scheme can be combined with other qubit readout methods based on the discrimination of cavity photon states to further improve the qubit state readout. -
-
References
[1] DiVincenzo D P 3.0.CO;2-E" target="_blank">2000 Fortschr. Phys. 48 771 doi: 10.1002/1521-397820000948:9/11<771::AID-PROP771>3.0.CO;2-ECrossRef 2000 Fortschr. Phys. 48 771" target="_blank">Google Scholar
[2] DiVincenzo D P 2009 Phys. Scr. T137 014020 doi: 10.1088/0031-8949/2009/T137/014020[3] Steffen L, Salathe Y, Oppliger M, Kurpiers P, Baur M, Lang C, Eichler C, Puebla-Hellmann G, Fedorov A, and Wallraff A 2013 Nature 500 319 doi: 10.1038/nature12422[4] Barends R, Kelly J, Megrant A et al.. 2014 Nature 508 500 doi: 10.1038/nature13171[5] Kelly J, Barends R, Fowler A G et al.. 2015 Nature 519 66 doi: 10.1038/nature14270[6] Johnson J E, Macklin C, Slichter D H, Vijay R, Weingarten E B, Clarke J, and Siddiqi I 2012 Phys. Rev. Lett. 109 050506 doi: 10.1103/PhysRevLett.109.050506[7] Ristè D, van Leeuwen J G, Ku H S, Lehnert K W, and DiCarlo L 2012 Phys. Rev. Lett. 109 050507 doi: 10.1103/PhysRevLett.109.050507[8] Geerlings K, Leghtas Z, Pop I M, Shankar S, Frunzio L, Schoelkopf R J, Mirrahimi M, and Devoret M H 2013 Phys. Rev. Lett. 110 120501 doi: 10.1103/PhysRevLett.110.120501[9] Magnard P, Kurpiers P, Royer B, Walter T, Besse J C, Gasparinetti S, Pechal M, Heinsoo J, Storz S, Blais A, and Wallraff A 2018 Phys. Rev. Lett. 121 060502 doi: 10.1103/PhysRevLett.121.060502[10] Arute F, Arya K, Babbush R et al.. 2019 Nature 574 505 doi: 10.1038/s41586-019-1666-5[11] Kandala A, Temme K, Córcoles A D, Mezzacapo A, Chow J M, and Gambetta J M 2019 Nature 567 491 doi: 10.1038/s41586-019-1040-7[12] Tannu S S and Qureshi M K 2019 Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS '19 Association for Computing Machinery, New York, NY, USA pp 987–999 doi: 10.1145/3297858.3304007[13] Tannu S S and Qureshi M K 2019 Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO '52 Association for Computing Machinery, New York, NY, USA pp 279–290[14] Lupaşcu A, Saito S, Picot T, de Groot P C, Harmans C J P M, and Mooij J E 2007 Nat. Phys. 3 119 doi: 10.1038/nphys509[15] Picot T, Schouten R, Harmans C J P M, and Mooij J E 2010 Phys. Rev. Lett. 105 040506 doi: 10.1103/PhysRevLett.105.040506[16] Nakajima T, Noiri A, Yoneda J, Delbecq M R, Stano P, Otsuka T, Takeda K, Amaha S, Allison G, Kawasaki K, Ludwig A, Wieck A D, Loss D, and Tarucha S 2019 Nat. Nanotechnol. 14 555 doi: 10.1038/s41565-019-0426-x[17] Raha M, Chen S, Phenicie C M, Ourari S, Dibos A M, and Thompson J D 2020 Nat. Commun. 11 1605 doi: 10.1038/s41467-020-15138-7[18] Ristè D, Poletto S, Huang M Z, Bruno A, Vesterinen V, Saira O P, and DiCarlo L 2015 Nat. Commun. 6 6983 doi: 10.1038/ncomms7983[19] Hacohen-Gourgy S, Martin L S, Flurin E, Ramasesh V V, Whaley K B, and Siddiqi I 2016 Nature 538 491 doi: 10.1038/nature19762[20] Blais A, Huang R S, Wallraff A, Girvin S M, and Schoelkopf R J 2004 Phys. Rev. A 69 062320 doi: 10.1103/PhysRevA.69.062320[21] Mallet F, Ong F R, Palacios-Laloy A, Nguyen F, Bertet P, Vion D, and Esteve D 2009 Nat. Phys. 5 791 doi: 10.1038/nphys1400[22] Walter T, Kurpiers P, Gasparinetti S et al.. 2017 Phys. Rev. Appl. 7 054020 doi: 10.1103/PhysRevApplied.7.054020[23] Wang X, Miranowicz A, and Nori F 2019 Phys. Rev. Appl. 12 064037 doi: 10.1103/PhysRevApplied.12.064037[24] Clerk A, Girvin S, and Stone A D 2003 Phys. Rev. B 67 165324 doi: 10.1103/PhysRevB.67.165324[25] Clerk A A, Devoret M H, Girvin S M, Marquardt F, and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155 doi: 10.1103/RevModPhys.82.1155[26] Blais A, Grimsmo A L, Girvin S M, and Wallraff A 2021 Rev. Mod. Phys. 93 025005 doi: 10.1103/RevModPhys.93.025005[27] Ikonen J, Goetz J, Ilves J et al.. 2019 Phys. Rev. Lett. 122 080503 doi: 10.1103/PhysRevLett.122.080503[28] Touzard S, Kou A, Frattini N E et al.. 2019 Phys. Rev. Lett. 122 080502 doi: 10.1103/PhysRevLett.122.080502[29] Reed M D, DiCarlo L, Johnson B R et al.. 2010 Phys. Rev. Lett. 105 173601 doi: 10.1103/PhysRevLett.105.173601[30] Boissonneault M, Gambetta J M, and Blais A 2010 Phys. Rev. Lett. 105 100504 doi: 10.1103/PhysRevLett.105.100504[31] Gao J and Zmuidzinas J 2008 The Physics of Superconducting Microwave Resonators, CIT theses California Institute of Technology[32] Bradley R 2018 Proceedings of the 2nd International Workshop Part of the Springer Proceedings in Physics book series, SPPHY vol 211 p 39 doi: 10.1007/978-3-319-92726-8_4[33] Kokkoniemi R, Ollikainen T, Lake R E et al.. 2017 Sci. Rep. 7 14713 doi: 10.1038/s41598-017-15190-2[34] Zhang J, Li T, Kokkoniemi R et al.. 2020 AIP Adv. 10 065128 doi: 10.1063/5.0006499[35] Naaman O, Strong J A, Ferguson D G et al.. 2017 J. Appl. Phys. 121 073904 doi: 10.1063/1.4976809[36] Eder P, Ramos T, Goetz J et al.. 2018 Supercond. Sci. Technol. 31 115002 doi: 10.1088/1361-6668/aad8f4[37] Pogorzalek S, Fedorov K G, Xu M et al.. 2019 Nat. Commun. 10 2604 doi: 10.1038/s41467-019-10727-7[38] Probst S, Song F B, Bushev P A et al.. 2015 Rev. Sci. Instrum. 86 024706 doi: 10.1063/1.4907935[39] Krantz P, Bengtsson A, Simoen M et al.. 2016 Nat. Commun. 7 11417 doi: 10.1038/ncomms11417[40] Krantz P, Kjaergaard M, Yan F et al.. 2019 Appl. Phys. Rev. 6 021318 doi: 10.1063/1.5089550[41] Kjaergaard M, Schwartz M E, Braumüller J et al.. 2020 Annu. Rev. Condens. Matter Phys. 11 369 doi: 10.1146/annurev-conmatphys-031119-050605[42] Place A P M, Rodgers L V H, Mundada P et al.. 2021 Nat. Commun. 12 1779 doi: 10.1038/s41467-021-22030-5 -
Related Articles
-
Cited by
Periodical cited type(3)
1. Zhang, Y., Yang, C., Su, Q. et al. Quantum Voting Machine Encoded with Microwave Photons. Chinese Physics Letters, 2024, 41(7): 070302. DOI:10.1088/0256-307X/41/7/070302 2. Yan, H., Wu, X., Lingenfelter, A. et al. Broadband bandpass Purcell filter for circuit quantum electrodynamics. Applied Physics Letters, 2023, 123(13): 134001. DOI:10.1063/5.0161893 3. Chen, J., Wu, C., Fan, J. et al. Characterization of topological phase of superlattices in superconducting circuits. Chinese Physics B, 2022, 31(8): 088501. DOI:10.1088/1674-1056/ac5612 Other cited types(0)