Uncooperative Effect of Hydrogen Bond on Water Dimer
-
Abstract
The water dimer demonstrates a completely different protype in water systems, it prefers not forming larger clusters instead existing in vapor phase stably, which contracts the viewpoint of the cooperative effect of hydrogen bond (O–H⋯O). It is well accepted that the cooperative effect is beneficial to forming more hydrogen bonds (O–H⋯O), leading to stronger H-bond (H⋯O) and increase in the O–H bond length with contraction of intermolecular distance. Herein, the high-precision ab initio methods of calculations applied on water dimer shows that the O–H bond length decreases and H-bond (H⋯O) becomes weaker with decreasing H-bond length and O⋯O distance, which can be considered as the uncooperative effect of hydrogen bond (O–H⋯O). It is ascribed to the exchange repulsion of electrons, which results in decrease of the O–H bond length and prevents the decrease in the O⋯O distance connected with the increasing scale of water clusters. Our findings highlight the uncooperative effect of hydrogen bond attributed to exchange repulsion of electrons as the mechanism for stabilizing water dimer in vapor phase, and open a new perspective for studies of hydrogen-bonded systems. -
-
References
[1] Kennedy D and Norman C 2005 Science 309 75 doi: 10.1126/science.309.5731.75[2] Kamb B, Narten A H and Levy H A 1970 Science 167 1520 doi: 10.1126/science.167.3924.1520[3] Chaplin M F 2001 Biochem. Mol. Biol. Education 29 54 doi: 10.1016/S1470-81750100017-0[4] Derjaguin B and Churaev N 1971 Nat. Phys. Sci. 232 131 doi: 10.1038/physci232131a0[5] Chaplin M 2015 Water Structure and Science Aptarimas: Vanduo[6] Ekwall P, Mandell L and Fontell K 1969 J. Colloid Interface Sci. 31 508 doi: 10.1016/0021-97976990052-6[7] Chen M, Ko H Y and Remsing R C 2017 Proc. Natl. Acad. Sci. USA 114 10846 doi: 10.1073/pnas.1712499114[8] Dyke T R, Mack K M and Muenter J S 1977 J. Chem. Phys. 66 498 doi: 10.1063/1.433969[9] Pfeilsticker K 2003 Science 300 2078 doi: 10.1126/science.1082282[10] Harries J E, Burroughs W J and Gebbie H A 1969 J. Quant. Spectrosc. Radiat. Transfer 9 799 doi: 10.1016/0022-40736990076-4[11] Curtiss L A, Frurip D J and Blander M 1978 Chem. Phys. Lett. 54 575 doi: 10.1016/0009-26147885290-7[12] Sciortino F and Fornili S L 1989 J. Chem. Phys. 90 2786 doi: 10.1063/1.455927[13] Guevara-Vela J M, Chávez-Calvillo R, García-Revilla M, Hernndez-Trujillo J, Christiansen O, Francisco E, Pendas A M and Rocha-Rinza T 2013 Chem. - Eur. J. 19 1 doi: 10.1002/chem.201290224[14] Stokely K M, Mazza M G, Stanley H E and Franzese G 2010 Proc. Natl. Acad. Sci. USA 107 1301 doi: 10.1073/pnas.0912756107[15] Mehring M, Markus S and Ludwig R 2003 Chem. - Eur. J. 9 837 doi: 10.1002/chem.200390093[16] Ludwig R 3.0.CO;2-1" target="_blank">2001 Angew. Chem. Int. Ed. 40 1808 doi: 10.1002/1521-37732001051840:10<1808::AID-ANIE1808>3.0.CO;2-1CrossRef 2001 Angew. Chem. Int. Ed. 40 1808" target="_blank">Google Scholar
[17] Yoon B J, Morokuma K and Davidson E R 1985 J. Chem. Phys. 83 1223 doi: 10.1063/1.449435[18] Frank H S and Wen W Y 1957 Discuss. Faraday Soc. 24 133 doi: 10.1039/df9572400133[19] Saenger W 1979 Nature 279 343 doi: 10.1038/279343a0[20] Kar T and Scheiner S 2004 J. Phys. Chem. A 108 9161 doi: 10.1021/jp048546l[21] Sun C and Sun Y 2016 The Attribute of Water: Single Notion, Multiple Myth, in Springer Ser. Chem. Phys. Heidelberg: Springer-Verlag vol 113 p 1[22] Masella M and Flament J P 1998 J. Chem. Phys. 108 7141 doi: 10.1063/1.476131[23] Argaman N 2000 Am. J. Phys. 68 69 doi: 10.1119/1.19375[24] Cook R L, De Lucia F C and Helminger P 1974 J. Mol. Spectrosc. 53 62 doi: 10.1016/0022-28527490261-6[25] Fang Y, Xiao B and Tao J 2013 Phys. Rev. B 87 214101 doi: 10.1103/PhysRevB.87.214101[26] Abascala J L F and Vega C 2005 J. Chem. Phys. 123 234505 doi: 10.1063/1.2121687[27] Xantheas S S 2000 Chem. Phys. 258 225 doi: 10.1016/S0301-01040000189-0[28] Sun C, Zhang X and Zheng W 2012 Chem. Sci. 3 1455 doi: 10.1039/c2sc20066j[29] Kowalski K and Piecuch P 2000 J. Chem. Phys. 113 18 doi: 10.1063/1.481769[30] Knizia G, Adler T B and Werner H J 2009 J. Chem. Phys. 130 054104 doi: 10.1063/1.3054300[31] Geerlings P, Proft F D and Langenaeker W 2003 Chem. Rev. 103 1793 doi: 10.1021/cr990029p[32] Elstner M, Porezag D, Seifert G, Frauenheim T and Suhai S 1998 MRS Proc. 538 541 doi: 10.1557/PROC-538-541[33] Allinger N L 1976 Adv. Phys. Org. Chem. 13 1 doi: 10.1016/S0065-31600860212-9[34] Lane J R 2013 J. Chem. Theory Comput. 9 316 doi: 10.1021/ct300832f[35] Klopper W, van Duijneveldt-van de Rijdt J G C M and van Duijneveldt F B 2000 Phys. Chem. Chem. Phys. 2 2227 doi: 10.1039/a910312k[36] Skinner H A 1945 Trans. Faraday Soc. 41 645 doi: 10.1039/tf9454100645[37] Kirchner B 2005 J. Chem. Phys. 123 204116 doi: 10.1063/1.2126977[38] Afonin A V, Ushakov I A, Vashchenko A V, Kondarshov E V and Rulev A Y 2010 Magn. Reson. Chem. 48 661 doi: 10.1002/mrc.2643[39] Parthasarathi R, Subramanian V and Sathyamurthy N 2008 Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry 38 18 doi: 10.1080/15533170701851250[40] Pople J A, Bernstein H J and Schneider W G 1959 High-Resolution Nuclear Magnetic Resonance New York: McGraw-Hill[41] Bickelhaupt F M and Baerends E J 2000 Reviews in computational chemistry 15 1 doi: 10.1002/9780470125922.ch1 -
Related Articles
[1] HU Wen-Juan, XIE Fen-Yan, CHEN Qiang, WENG Jing. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma [J]. Chin. Phys. Lett., 2008, 25(10): 3805-3807. [2] HAO Xiao-Peng, WANG Bao-Yi, YU Run-Sheng, WEI Long, WANG Hui, ZHAO De-Gang, HAO Wei-Chang. Evolution of Structural Defects in SiOx Films Fabricated by Electron Cyclotron Resonance Plasma Chemical Vapour Deposition upon Annealing Treatment [J]. Chin. Phys. Lett., 2008, 25(3): 1034-1037. [3] LIN Ying-Bin, YANG Yan-Min, XU Jian-Ping, LIU Xing-Chong, WANGJian-Feng, HUANG Zhi-Gao, ZHANG Feng-Ming, DU You-Wei. Photoluminescence of ZnO and Mn-Doped ZnO Polycrystalline Films Prepared by Plasma Enhanced Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2007, 24(9): 2685-2688. [4] LIN Ying-Bin, LU Zhi-Hai, ZOU Wen-Qin, LU Zhong-Lin, XU Jian-Ping, JI Jian-Ti, LIU Xing-Chong, WANG Jian-Feng, LV Li-Ya, ZHANG Feng-Ming, DU You-Wei, HUANG Zhi-Gao, ZHENG Jian-Guo. Room-Temperature Ferromagnetic ZnMnO Thin Films Synthesized by Plasma Enhanced Chemical Vapour Deposition Method [J]. Chin. Phys. Lett., 2007, 24(7): 2085-2087. [5] Department of Physics, Lanzhou University, Lanzhou. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2006, 23(12): 3338-3340. [6] YU Wei, WANG Bao-Zhu, LU Wan-Bing, YANG Yan-Bin, HAN Li, FU Guang-Sheng. Growth of Nanocrystalline Silicon Films by Helicon Wave Plasma Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2004, 21(7): 1320-1322. [7] LIN Xuan-Ying, HUANG Chuang-Jun, LIN Kui-Xun, YU Yun-Peng, YU Chu-Ying, CHI Ling-Fei. Low-Temperature Growth of Polycrystalline Silicon Films bySiCl4/H2 rf Plasma Enhanced Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2003, 20(10): 1879-1882. [8] WANG Peng-Fei, DING Shi-Jin, ZHANG Wei, ZHANG Jim-Yun, WANG Ji-Tao, WEI William Lee. FTIR Characterization of Fluorine Doped Silicon Dioxide Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2000, 17(12): 912-914. [9] LIU Yi-chun, LIU Chun-guang, CHEN Da-wei, LIU Yu-xue, BAI Yu-bai, LI Tie-jin. Photoluminescence Properties of a-SiC:H Films Grown by Plasma Enhanced Chemical Vapor Deposition from SiH4+C2H2 Gas Mixtures [J]. Chin. Phys. Lett., 1998, 15(11): 837-839. [10] MA Tian-fu, CHEN Kun-ji, DU Jia-fang, XU Jun, LI Wei, HUANG Xin-fan. Blue Light Emission from Hydrogenated Amorphous Silicon CarbidePrepared by Xylene Source in Plasma-Enhanced Chemical Vapour Deposition System [J]. Chin. Phys. Lett., 1996, 13(12): 947-949.