Uncooperative Effect of Hydrogen Bond on Water Dimer

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11974136 and 11674123).
  • Received Date: November 15, 2020
  • Published Date: December 31, 2020
  • The water dimer demonstrates a completely different protype in water systems, it prefers not forming larger clusters instead existing in vapor phase stably, which contracts the viewpoint of the cooperative effect of hydrogen bond (O–HO). It is well accepted that the cooperative effect is beneficial to forming more hydrogen bonds (O–HO), leading to stronger H-bond (HO) and increase in the O–H bond length with contraction of intermolecular distance. Herein, the high-precision ab initio methods of calculations applied on water dimer shows that the O–H bond length decreases and H-bond (HO) becomes weaker with decreasing H-bond length and OO distance, which can be considered as the uncooperative effect of hydrogen bond (O–HO). It is ascribed to the exchange repulsion of electrons, which results in decrease of the O–H bond length and prevents the decrease in the OO distance connected with the increasing scale of water clusters. Our findings highlight the uncooperative effect of hydrogen bond attributed to exchange repulsion of electrons as the mechanism for stabilizing water dimer in vapor phase, and open a new perspective for studies of hydrogen-bonded systems.
  • Article Text

  • [1]
    Kennedy D and Norman C 2005 Science 309 75 doi: 10.1126/science.309.5731.75

    CrossRef Google Scholar

    [2]
    Kamb B, Narten A H and Levy H A 1970 Science 167 1520 doi: 10.1126/science.167.3924.1520

    CrossRef Google Scholar

    [3]
    Chaplin M F 2001 Biochem. Mol. Biol. Education 29 54 doi: 10.1016/S1470-81750100017-0

    CrossRef Google Scholar

    [4]
    Derjaguin B and Churaev N 1971 Nat. Phys. Sci. 232 131 doi: 10.1038/physci232131a0

    CrossRef Google Scholar

    [5]
    Chaplin M 2015 Water Structure and Science Aptarimas: Vanduo

    Google Scholar

    [6]
    Ekwall P, Mandell L and Fontell K 1969 J. Colloid Interface Sci. 31 508 doi: 10.1016/0021-97976990052-6

    CrossRef Google Scholar

    [7]
    Chen M, Ko H Y and Remsing R C 2017 Proc. Natl. Acad. Sci. USA 114 10846 doi: 10.1073/pnas.1712499114

    CrossRef Google Scholar

    [8]
    Dyke T R, Mack K M and Muenter J S 1977 J. Chem. Phys. 66 498 doi: 10.1063/1.433969

    CrossRef Google Scholar

    [9]
    Pfeilsticker K 2003 Science 300 2078 doi: 10.1126/science.1082282

    CrossRef Google Scholar

    [10]
    Harries J E, Burroughs W J and Gebbie H A 1969 J. Quant. Spectrosc. Radiat. Transfer 9 799 doi: 10.1016/0022-40736990076-4

    CrossRef Google Scholar

    [11]
    Curtiss L A, Frurip D J and Blander M 1978 Chem. Phys. Lett. 54 575 doi: 10.1016/0009-26147885290-7

    CrossRef Google Scholar

    [12]
    Sciortino F and Fornili S L 1989 J. Chem. Phys. 90 2786 doi: 10.1063/1.455927

    CrossRef Google Scholar

    [13]
    Guevara-Vela J M, Chávez-Calvillo R, García-Revilla M, Hernndez-Trujillo J, Christiansen O, Francisco E, Pendas A M and Rocha-Rinza T 2013 Chem. - Eur. J. 19 1 doi: 10.1002/chem.201290224

    CrossRef Google Scholar

    [14]
    Stokely K M, Mazza M G, Stanley H E and Franzese G 2010 Proc. Natl. Acad. Sci. USA 107 1301 doi: 10.1073/pnas.0912756107

    CrossRef Google Scholar

    [15]
    Mehring M, Markus S and Ludwig R 2003 Chem. - Eur. J. 9 837 doi: 10.1002/chem.200390093

    CrossRef Google Scholar

    [16]
    [17]
    Yoon B J, Morokuma K and Davidson E R 1985 J. Chem. Phys. 83 1223 doi: 10.1063/1.449435

    CrossRef Google Scholar

    [18]
    Frank H S and Wen W Y 1957 Discuss. Faraday Soc. 24 133 doi: 10.1039/df9572400133

    CrossRef Google Scholar

    [19]
    Saenger W 1979 Nature 279 343 doi: 10.1038/279343a0

    CrossRef Google Scholar

    [20]
    Kar T and Scheiner S 2004 J. Phys. Chem. A 108 9161 doi: 10.1021/jp048546l

    CrossRef Google Scholar

    [21]
    Sun C and Sun Y 2016 The Attribute of Water: Single Notion, Multiple Myth, in Springer Ser. Chem. Phys. Heidelberg: Springer-Verlag vol 113 p 1

    Google Scholar

    [22]
    Masella M and Flament J P 1998 J. Chem. Phys. 108 7141 doi: 10.1063/1.476131

    CrossRef Google Scholar

    [23]
    Argaman N 2000 Am. J. Phys. 68 69 doi: 10.1119/1.19375

    CrossRef Google Scholar

    [24]
    Cook R L, De Lucia F C and Helminger P 1974 J. Mol. Spectrosc. 53 62 doi: 10.1016/0022-28527490261-6

    CrossRef Google Scholar

    [25]
    Fang Y, Xiao B and Tao J 2013 Phys. Rev. B 87 214101 doi: 10.1103/PhysRevB.87.214101

    CrossRef Google Scholar

    [26]
    Abascala J L F and Vega C 2005 J. Chem. Phys. 123 234505 doi: 10.1063/1.2121687

    CrossRef Google Scholar

    [27]
    Xantheas S S 2000 Chem. Phys. 258 225 doi: 10.1016/S0301-01040000189-0

    CrossRef Google Scholar

    [28]
    Sun C, Zhang X and Zheng W 2012 Chem. Sci. 3 1455 doi: 10.1039/c2sc20066j

    CrossRef Google Scholar

    [29]
    Kowalski K and Piecuch P 2000 J. Chem. Phys. 113 18 doi: 10.1063/1.481769

    CrossRef Google Scholar

    [30]
    Knizia G, Adler T B and Werner H J 2009 J. Chem. Phys. 130 054104 doi: 10.1063/1.3054300

    CrossRef Google Scholar

    [31]
    Geerlings P, Proft F D and Langenaeker W 2003 Chem. Rev. 103 1793 doi: 10.1021/cr990029p

    CrossRef Google Scholar

    [32]
    Elstner M, Porezag D, Seifert G, Frauenheim T and Suhai S 1998 MRS Proc. 538 541 doi: 10.1557/PROC-538-541

    CrossRef Google Scholar

    [33]
    Allinger N L 1976 Adv. Phys. Org. Chem. 13 1 doi: 10.1016/S0065-31600860212-9

    CrossRef Google Scholar

    [34]
    Lane J R 2013 J. Chem. Theory Comput. 9 316 doi: 10.1021/ct300832f

    CrossRef Google Scholar

    [35]
    Klopper W, van Duijneveldt-van de Rijdt J G C M and van Duijneveldt F B 2000 Phys. Chem. Chem. Phys. 2 2227 doi: 10.1039/a910312k

    CrossRef Google Scholar

    [36]
    Skinner H A 1945 Trans. Faraday Soc. 41 645 doi: 10.1039/tf9454100645

    CrossRef Google Scholar

    [37]
    Kirchner B 2005 J. Chem. Phys. 123 204116 doi: 10.1063/1.2126977

    CrossRef Google Scholar

    [38]
    Afonin A V, Ushakov I A, Vashchenko A V, Kondarshov E V and Rulev A Y 2010 Magn. Reson. Chem. 48 661 doi: 10.1002/mrc.2643

    CrossRef Google Scholar

    [39]
    Parthasarathi R, Subramanian V and Sathyamurthy N 2008 Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry 38 18 doi: 10.1080/15533170701851250

    CrossRef Google Scholar

    [40]
    Pople J A, Bernstein H J and Schneider W G 1959 High-Resolution Nuclear Magnetic Resonance New York: McGraw-Hill

    Google Scholar

    [41]
    Bickelhaupt F M and Baerends E J 2000 Reviews in computational chemistry 15 1 doi: 10.1002/9780470125922.ch1

    CrossRef Google Scholar

  • Related Articles

    [1]HU Wen-Juan, XIE Fen-Yan, CHEN Qiang, WENG Jing. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma [J]. Chin. Phys. Lett., 2008, 25(10): 3805-3807.
    [2]HAO Xiao-Peng, WANG Bao-Yi, YU Run-Sheng, WEI Long, WANG Hui, ZHAO De-Gang, HAO Wei-Chang. Evolution of Structural Defects in SiOx Films Fabricated by Electron Cyclotron Resonance Plasma Chemical Vapour Deposition upon Annealing Treatment [J]. Chin. Phys. Lett., 2008, 25(3): 1034-1037.
    [3]LIN Ying-Bin, YANG Yan-Min, XU Jian-Ping, LIU Xing-Chong, WANGJian-Feng, HUANG Zhi-Gao, ZHANG Feng-Ming, DU You-Wei. Photoluminescence of ZnO and Mn-Doped ZnO Polycrystalline Films Prepared by Plasma Enhanced Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2007, 24(9): 2685-2688.
    [4]LIN Ying-Bin, LU Zhi-Hai, ZOU Wen-Qin, LU Zhong-Lin, XU Jian-Ping, JI Jian-Ti, LIU Xing-Chong, WANG Jian-Feng, LV Li-Ya, ZHANG Feng-Ming, DU You-Wei, HUANG Zhi-Gao, ZHENG Jian-Guo. Room-Temperature Ferromagnetic ZnMnO Thin Films Synthesized by Plasma Enhanced Chemical Vapour Deposition Method [J]. Chin. Phys. Lett., 2007, 24(7): 2085-2087.
    [5]Department of Physics, Lanzhou University, Lanzhou. Al-Induced Crystallization Growth of Si Films by Inductively Coupled Plasma Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2006, 23(12): 3338-3340.
    [6]YU Wei, WANG Bao-Zhu, LU Wan-Bing, YANG Yan-Bin, HAN Li, FU Guang-Sheng. Growth of Nanocrystalline Silicon Films by Helicon Wave Plasma Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2004, 21(7): 1320-1322.
    [7]LIN Xuan-Ying, HUANG Chuang-Jun, LIN Kui-Xun, YU Yun-Peng, YU Chu-Ying, CHI Ling-Fei. Low-Temperature Growth of Polycrystalline Silicon Films bySiCl4/H2 rf Plasma Enhanced Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2003, 20(10): 1879-1882.
    [8]WANG Peng-Fei, DING Shi-Jin, ZHANG Wei, ZHANG Jim-Yun, WANG Ji-Tao, WEI William Lee. FTIR Characterization of Fluorine Doped Silicon Dioxide Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2000, 17(12): 912-914.
    [9]LIU Yi-chun, LIU Chun-guang, CHEN Da-wei, LIU Yu-xue, BAI Yu-bai, LI Tie-jin. Photoluminescence Properties of a-SiC:H Films Grown by Plasma Enhanced Chemical Vapor Deposition from SiH4+C2H2 Gas Mixtures [J]. Chin. Phys. Lett., 1998, 15(11): 837-839.
    [10]MA Tian-fu, CHEN Kun-ji, DU Jia-fang, XU Jun, LI Wei, HUANG Xin-fan. Blue Light Emission from Hydrogenated Amorphous Silicon CarbidePrepared by Xylene Source in Plasma-Enhanced Chemical Vapour Deposition System [J]. Chin. Phys. Lett., 1996, 13(12): 947-949.

Catalog

    Article views (625) PDF downloads (615) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return