Extended Nernst–Planck Equation Incorporating Partial Dehydration Effect

Funds: Supported by the National Natural Science Foundation of China (Grant No. 11875076).
  • Received Date: April 29, 2020
  • Published Date: August 31, 2020
  • Novel ionic transporting phenomena emerge as nanostructures approach the molecular scale. At the sub-2 nm scale, widely used continuum equations, such as the Nernst–Planck equation, break down. Here, we extend the Nernst–Planck equation by adding a partial dehydration effect. Our model agrees with the reported ion fluxes through graphene oxide laminates with sub-2 nm interlayer spacing, outperforming previous models. We also predict that the selectivity sequences of alkali metal ions depend on the geometries of the nanostructures. Our model opens a new avenue for the investigation of the underlying mechanisms in nanofluidics at the sub-2 nm scale.
  • Article Text

  • [1]
    Kratochvil H T, Carr J K, Matulef K et al.. 2016 Science 353 1040 doi: 10.1126/science.aag1447

    CrossRef Google Scholar

    [2]
    Liu S and Gonen T 2018 Commun. Biol. 1 38 doi: 10.1038/s42003-018-0040-8

    CrossRef Google Scholar

    [3]
    Nair R R, Wu H A, Jayaram P et al.. 2012 Science 335 442 doi: 10.1126/science.1211694

    CrossRef Google Scholar

    [4]
    Joshi R K, Carbone P, Wang F C et al.. 2014 Science 343 752 doi: 10.1126/science.1245711

    CrossRef Google Scholar

    [5]
    Jain T, Rasera B C, Guerrero R J S et al.. 2015 Nat. Nanotechnol. 10 1053 doi: 10.1038/nnano.2015.222

    CrossRef Google Scholar

    [6]
    Radha B, Esfandiar A, Wang F C et al.. 2016 Nature 538 222 doi: 10.1038/nature19363

    CrossRef Google Scholar

    [7]
    Wen Q, Yan D X, Liu F et al.. 2016 Adv. Funct. Mater. 26 5796 doi: 10.1002/adfm.201601689

    CrossRef Google Scholar

    [8]
    Abraham J, Vasu K S, Williams C D et al.. 2017 Nat. Nanotechnol. 12 546 doi: 10.1038/nnano.2017.21

    CrossRef Google Scholar

    [9]
    Esfandiar A, Radha B, Wang F C et al.. 2017 Science 358 511 doi: 10.1126/science.aan5275

    CrossRef Google Scholar

    [10]
    Wang P F, Wang M, Liu F et al.. 2018 Nat. Commun. 9 569 doi: 10.1038/s41467-018-02941-6

    CrossRef Google Scholar

    [11]
    Zhang H C, Hou J, Hu Y X et al.. 2018 Sci. Adv. 4 eaaq0066 doi: 10.1126/sciadv.aaq0066

    CrossRef Google Scholar

    [12]
    Wang P F, Wang X, Ling Y et al.. 2018 Radiat. Meas. 119 80 doi: 10.1016/j.radmeas.2018.09.007

    CrossRef Google Scholar

    [13]
    Feng Y X, Zhang Y C, Ying C F et al.. 2015 Genomics Proteomics & Bioinf. 13 4 doi: 10.1016/j.gpb.2015.01.009

    CrossRef Google Scholar

    [14]
    Wang L D, Boutilier M S H, Kidambi P R et al.. 2017 Nat. Nanotechnol. 12 509 doi: 10.1038/nnano.2017.72

    CrossRef Google Scholar

    [15]
    Wei N, Peng X S and Xu Z P 2014 ACS Appl. Mater. & Interfaces 6 5877 doi: 10.1021/am500777b

    CrossRef Google Scholar

    [16]
    Sahu S, Di Ventra M and Zwolak M 2017 Nano Lett. 17 4719 doi: 10.1021/acs.nanolett.7b01399

    CrossRef Google Scholar

    [17]
    Wang M, Shen W H, Ding S Y et al.. 2018 Nanoscale 10 18821 doi: 10.1039/C8NR04962A

    CrossRef Google Scholar

    [18]
    Moy G, Corry B, Kuyucak S et al.. 2000 Biophys. J. 78 2349 doi: 10.1016/S0006-34950076780-4

    CrossRef Google Scholar

    [19]
    Corry B, Kuyucak S and Chung S H 2000 Biophys. J. 78 2364 doi: 10.1016/S0006-34950076781-6

    CrossRef Google Scholar

    [20]
    Song C and Corry B 2011 PLOS ONE 6 e21204 doi: 10.1371/journal.pone.0021204

    CrossRef Google Scholar

    [21]
    Chen P R, Xu Z C, Gu Y et al.. 2016 Chin. Phys. B 25 086601 doi: 10.1088/1674-1056/25/8/086601

    CrossRef Google Scholar

    [22]
    Gao Y, Huang J, Liu Y W et al.. 2019 Curr. Opin. Electrochem. 13 107 doi: 10.1016/j.coelec.2018.11.007

    CrossRef Google Scholar

    [23]
    Suk M E and Aluru N R 2014 J. Chem. Phys. 140 084707 doi: 10.1063/1.4866643

    CrossRef Google Scholar

    [24]
    Mouterde T, Keerthi A, Poggioli A R et al.. 2019 Nature 567 87 doi: 10.1038/s41586-019-0961-5

    CrossRef Google Scholar

    [25]
    Qiao Y and Lu B Z 2016 Chin. Phys. B 25 018705 doi: 10.1088/1674-1056/25/1/018705

    CrossRef Google Scholar

    [26]
    Gillespie D, Xu L and Meissner G 2014 Biophys. J. 107 2263 doi: 10.1016/j.bpj.2014.09.031

    CrossRef Google Scholar

    [27]
    Laio A and Torre V 1999 Biophys. J. 76 129 doi: 10.1016/S0006-34959977184-5

    CrossRef Google Scholar

    [28]
    Zwolak M, Lagerqvist J and Di Ventra M 2009 Phys. Rev. Lett. 103 128102 doi: 10.1103/PhysRevLett.103.128102

    CrossRef Google Scholar

    [29]
    Zwolak M, Wilson J and Di Ventra M 2010 J. Phys.: Condens. Matter 22 454126 doi: 10.1088/0953-8984/22/45/454126

    CrossRef Google Scholar

    [30]
    Schlaich A, Knapp E W and Netz R R 2016 Phys. Rev. Lett. 117 048001 doi: 10.1103/PhysRevLett.117.048001

    CrossRef Google Scholar

    [31]
    Fumagalli L, Esfandiar A, Fabregas R et al.. 2018 Science 360 1339 doi: 10.1126/science.aat4191

    CrossRef Google Scholar

    [32]
    Amiri H, Shepard K L, Nuckolls C et al.. 2017 Nano Lett. 17 1204 doi: 10.1021/acs.nanolett.6b04967

    CrossRef Google Scholar

    [33]
    Baimpos T, Shrestha B R, Raman S et al.. 2014 Langmuir 30 4322 doi: 10.1021/la500288w

    CrossRef Google Scholar

    [34]
    Eisenman G 1962 Biophys. J. 2 259 doi: 10.1016/S0006-34956286959-8

    CrossRef Google Scholar

    [35]
    Krauss D, Eisenberg B and Gillespie D 2011 Eur. Biophys. J. 40 775 doi: 10.1007/s00249-011-0691-6

    CrossRef Google Scholar

    [36]
    Wu J 1991 Biophys. J. 60 238 doi: 10.1016/S0006-34959182046-X

    CrossRef Google Scholar

    [37]
    Luchinsky D G, Tindjong R, Kaufman I et al.. 2009 Phys. Rev. E 80 021925 doi: 10.1103/PhysRevE.80.021925

    CrossRef Google Scholar

    [38]
    Ohtaki H and Radnai T 1993 Chem. Rev. 93 1157 doi: 10.1021/cr00019a014

    CrossRef Google Scholar

    [39]
    Marcus Y 1991 J. Chem. Soc., Faraday Trans. 87 2995 doi: 10.1039/FT9918702995

    CrossRef Google Scholar

    [40]
    Saxena A and García A E 2015 J. Phys. Chem. B 119 219 doi: 10.1021/jp507008x

    CrossRef Google Scholar

    [41]
    Yoo J, Wilson J and Aksimentiev A 2016 Biopolymers 105 752 doi: 10.1002/bip.22868

    CrossRef Google Scholar

    [42]
    Hong S, Constans C, Surmani Martins M V et al.. 2017 Nano Lett. 17 728 doi: 10.1021/acs.nanolett.6b03837

    CrossRef Google Scholar

    [43]
    Zhang Z K, Shen W H, Lin L X et al.. 2020 Adv. Sci. 7 2000286 doi: 10.1002/advs.202000286

    CrossRef Google Scholar

    [44]
    Xu W L, Fang C, Zhou F L et al.. 2017 Nano Lett. 17 2928 doi: 10.1021/acs.nanolett.7b00148

    CrossRef Google Scholar

    [45]
    Ren C E, Hatzell K B, Alhabeb M et al.. 2015 J. Phys. Chem. Lett. 6 4026 doi: 10.1021/acs.jpclett.5b01895

    CrossRef Google Scholar

    [46]
    Feng J D, Liu K, Graf M et al.. 2016 Nat. Mater. 15 850 doi: 10.1038/nmat4607

    CrossRef Google Scholar

    [47]
    Guo Y, Ying Y L, Mao Y Y et al.. 2016 Ngewandte Chem.-Int. Ed. 55 15120 doi: 10.1002/anie.201607329

    CrossRef Google Scholar

    [48]
    Surwade S P, Smirnov S N, Vlassiouk I V et al.. 2015 Nat. Nanotechnol. 10 459 doi: 10.1038/nnano.2015.37

    CrossRef Google Scholar

  • Related Articles

    [1]S. S. Dehcheshmeh, S. Karimi Vanani, J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation [J]. Chin. Phys. Lett., 2012, 29(4): 045201. doi: 10.1088/0256-307X/29/4/045201
    [2]C. F. Lo. Dynamics of Fokker-Planck Equation with Logarithmic Coefficients and Its Application in Econophysics [J]. Chin. Phys. Lett., 2010, 27(8): 080503. doi: 10.1088/0256-307X/27/8/080503
    [3]ZHANG Ying. Z' Mixing Effect in Stueckelberg Extended Effective Theory [J]. Chin. Phys. Lett., 2009, 26(8): 081102. doi: 10.1088/0256-307X/26/8/081102
    [4]Kuetche Kamgang Victor, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. On the Conversion of High-Frequency Soliton Solutions to a (1+1)-Dimensional Nonlinear Partial Differential Evolution Equation [J]. Chin. Phys. Lett., 2008, 25(6): 1972-1975.
    [5]LI Wei, Q. A. Wang, A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation [J]. Chin. Phys. Lett., 2008, 25(4): 1165-1167.
    [6]WANG Peng, WANG Shun-Jin, ZHANG Hua. Generalized Fokker--Planck Equation with Time-Dependent Transport Coefficients and a Quadratic Potential: Its Application in Econophysics [J]. Chin. Phys. Lett., 2005, 22(1): 5-8.
    [7]JI Helin, QIN Mengjun, JIN Xin, YAO Xixian, FU Yaoxian. Extended Rate Equation for Flux Motion in High-Tc Superconductors [J]. Chin. Phys. Lett., 1994, 11(6): 369-372.
    [8]LU Zhiheng, HU Gang, L.Schoendorff, H.Risken. Numerical Study on Fokker-Planck Equation of Bistable System Driven by Colored Noise [J]. Chin. Phys. Lett., 1992, 9(6): 281-284.
    [9]WANG Xinyi, LU Yuekai. EXACT SOLUTIONS OF THE EXTENDED BURGERS-FISHER EQUATION [J]. Chin. Phys. Lett., 1990, 7(4): 145-147.
    [10]CHU Fuming, FANG Fukang. GEOMETRIC APPROACH TO FOKKER-PLANCK EQUATION, CONSERVATION LAW [J]. Chin. Phys. Lett., 1986, 3(7): 333-335.

Catalog

    Article views (219) PDF downloads (380) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return