The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator
-
Abstract
We study the analytic structure for the eigenvalues of the one-dimensional Dirac oscillator, by analytically continuing its frequency on the complex plane. A twofold Riemann surface is found, connecting the two states of a pair of particle and antiparticle. One can, at least in principle, accomplish the transition from a positive energy state to its antiparticle state by moving the frequency continuously on the complex plane, without changing the Hamiltonian after transition. This result provides a visual explanation for the absence of a negative energy state with the quantum number n=0.
Article Text
-
-
-
About This Article
Cite this article:
Bo-Xing Cao , Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 090303. DOI: 10.1088/0256-307X/37/9/090303
Bo-Xing Cao , Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 090303. DOI: 10.1088/0256-307X/37/9/090303
|
Bo-Xing Cao , Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 090303. DOI: 10.1088/0256-307X/37/9/090303
Bo-Xing Cao , Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 090303. DOI: 10.1088/0256-307X/37/9/090303
|