Temperature Gradient, Toroidal and Ion FLR Effects on Drift-Tearing Modes
-
Abstract
The influences of the temperature gradient and toroidal effects on drift-tearing modes have been studied using the Gyrokinetic Toroidal code. After the thermal force term is introduced into the parallel electron force balance equation, the equilibrium temperature gradient can cause a significant increase in the growth rate of the drift-tearing mode and a broadening of the mode structure. The simulation results show that the toroidal effects increase the growth rate of the drift-tearing mode, and the contours of the perturbation field “squeeze” toward the stronger field side in the poloidal section. Finally, the hybrid model for fluid electrons and kinetic ions has been studied briefly, and the dispersion relation of the drift-tearing mode under the influence of ion finite Larmor radius effects is obtained. Compared with the dispersion relation under the fluid model, a stabilizing effect of the ion finite Larmor radius is observed. -
-
References
[1] Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459 doi: 10.1063/1.1706761[2] Furth H P, Rutherford P H and Selberg H 1973 Phys. Fluids 16 1054 doi: 10.1063/1.1694467[3] Rutherford P H 1973 Phys. Fluids 16 1903 doi: 10.1063/1.1694232[4] Hazeltine R D, Dobrott D and Wang T S 1975 Phys. Fluids 18 1778 doi: 10.1063/1.861097[5] Drake J F and Lee Y C 1977 Phys. Fluids 20 1341 doi: 10.1063/1.862017[6] Biskamp D 1978 Nucl. Fusion 18 1059 doi: 10.1088/0029-5515/18/8/003[7] Monticello D A and White R B 1980 Phys. Fluids 23 366 doi: 10.1063/1.862995[8] Ye M F, Zhang B Z, Jiang D Y and Li Y N 1998 Chin. Phys. Lett. 10 Suppl. p 191[9] Yang W, Li D and Xu X Q 2018 Chin. Phys. Lett. 35 065201 doi: 10.1088/0256-307X/35/6/065201[10] Xu T, Hu Q M, Hu X W and Yu Q Q 2011 Chin. Phys. Lett. 28 095202 doi: 10.1088/0256-307X/28/9/095202[11] Ji X Q, Yang Q W, Liu Y, Zhou J, Feng B B and Yuan B S 2010 Chin. Phys. Lett. 27 065202 doi: 10.1088/0256-307X/27/6/065202[12] Shi H, Zhang W, Feng H, Lin Z, Dong C, Bao J and Li D 2019 Phys. Plasmas 26 092512 doi: 10.1063/1.5116332[13] Hassam A B 1980 Phys. Fluids 23 2493 doi: 10.1063/1.862950[14] Nishimura S, Yagi M, Itoh S I, Azumi M and Itoh K 2007 J. Phys. Soc. Jpn. 76 064501 doi: 10.1143/JPSJ.76.064501[15] Yu Q, Günter S and Scott B D 2003 Phys. Plasmas 10 797 doi: 10.1063/1.1554739[16] Yu Q 2010 Nucl. Fusion 50 025014 doi: 10.1088/0029-5515/50/2/025014[17] Li D and Huo Y P 1998 Chin. Phys. Lett. 10 Suppl. p 154[18] Bussac M, Edery D, Pellat R and J L S 1978 Phys. Rev. Lett. 40 1500 doi: 10.1103/PhysRevLett.40.1500[19] Connor J, Ham C, Hastie R and Zocco A 2019 J. Plasma Phys. 85 905850204 doi: 10.1017/S0022377819000217[20] Chen Y, Chowdhury J, Parker S E and Wan W 2015 Phys. Plasmas 22 042111 doi: 10.1063/1.4919023[21] Cai H and Fu G 2012 Phys. Plasmas 19 072506 doi: 10.1063/1.4736956[22] Hornsby W A, Migliano P, Buchholz R, Kroenert L, Weikl A, Peeters A G, Zarzoso D, Poli E and Casson F J 2015 Phys. Plasmas 22 022118 doi: 10.1063/1.4907900[23] Cai H, Wang S, Xu Y, Cao J and Li D 2011 Phys. Rev. Lett. 106 075002 doi: 10.1103/PhysRevLett.106.075002[24] Holod I, Zhang W L, Xiao Y and Lin Z 2009 Phys. Plasmas 16 122307 doi: 10.1063/1.3273070[25] Deng W, Lin Z and Holod I 2012 Nucl. Fusion 52 023005 doi: 10.1088/0029-5515/52/2/023005[26] Liu D, Zhang W, Mcclenaghan J, Wang J and Lin Z 2014 Phys. Plasmas 21 122520 doi: 10.1063/1.4905074[27] Feng H, Zhang W, Dong C, Cao J and Li D 2017 Phys. Plasmas 24 102125 doi: 10.1063/1.4999166[28] Scott B D, Drake J F and Hassam A B 1985 Phys. Rev. Lett. 54 1027 doi: 10.1103/PhysRevLett.54.1027