Temperature Gradient, Toroidal and Ion FLR Effects on Drift-Tearing Modes

    Show all affliationsShow less
Funds: Supported by the National MCF Energy R&D Program (Grant Nos.  2018YFE0304100, 2018YFE0311300, and 2017YFE0301300), the National Natural Science Foundation of China (Grant Nos.  11675256, 11675257, 11835016, and 11705275), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16010300), the Key Research Program of Frontier Science of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SYS016), and the External Cooperation Program of Chinese Academy of Sciences (Grant No. 112111KYSB20160039).
  • Received Date: May 26, 2020
  • Published Date: July 31, 2020
  • The influences of the temperature gradient and toroidal effects on drift-tearing modes have been studied using the Gyrokinetic Toroidal code. After the thermal force term is introduced into the parallel electron force balance equation, the equilibrium temperature gradient can cause a significant increase in the growth rate of the drift-tearing mode and a broadening of the mode structure. The simulation results show that the toroidal effects increase the growth rate of the drift-tearing mode, and the contours of the perturbation field “squeeze” toward the stronger field side in the poloidal section. Finally, the hybrid model for fluid electrons and kinetic ions has been studied briefly, and the dispersion relation of the drift-tearing mode under the influence of ion finite Larmor radius effects is obtained. Compared with the dispersion relation under the fluid model, a stabilizing effect of the ion finite Larmor radius is observed.
  • Article Text

  • [1]
    Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459 doi: 10.1063/1.1706761

    CrossRef Google Scholar

    [2]
    Furth H P, Rutherford P H and Selberg H 1973 Phys. Fluids 16 1054 doi: 10.1063/1.1694467

    CrossRef Google Scholar

    [3]
    Rutherford P H 1973 Phys. Fluids 16 1903 doi: 10.1063/1.1694232

    CrossRef Google Scholar

    [4]
    Hazeltine R D, Dobrott D and Wang T S 1975 Phys. Fluids 18 1778 doi: 10.1063/1.861097

    CrossRef Google Scholar

    [5]
    Drake J F and Lee Y C 1977 Phys. Fluids 20 1341 doi: 10.1063/1.862017

    CrossRef Google Scholar

    [6]
    Biskamp D 1978 Nucl. Fusion 18 1059 doi: 10.1088/0029-5515/18/8/003

    CrossRef Google Scholar

    [7]
    Monticello D A and White R B 1980 Phys. Fluids 23 366 doi: 10.1063/1.862995

    CrossRef Google Scholar

    [8]
    Ye M F, Zhang B Z, Jiang D Y and Li Y N 1998 Chin. Phys. Lett. 10 Suppl. p 191

    Google Scholar

    [9]
    Yang W, Li D and Xu X Q 2018 Chin. Phys. Lett. 35 065201 doi: 10.1088/0256-307X/35/6/065201

    CrossRef Google Scholar

    [10]
    Xu T, Hu Q M, Hu X W and Yu Q Q 2011 Chin. Phys. Lett. 28 095202 doi: 10.1088/0256-307X/28/9/095202

    CrossRef Google Scholar

    [11]
    Ji X Q, Yang Q W, Liu Y, Zhou J, Feng B B and Yuan B S 2010 Chin. Phys. Lett. 27 065202 doi: 10.1088/0256-307X/27/6/065202

    CrossRef Google Scholar

    [12]
    Shi H, Zhang W, Feng H, Lin Z, Dong C, Bao J and Li D 2019 Phys. Plasmas 26 092512 doi: 10.1063/1.5116332

    CrossRef Google Scholar

    [13]
    Hassam A B 1980 Phys. Fluids 23 2493 doi: 10.1063/1.862950

    CrossRef Google Scholar

    [14]
    Nishimura S, Yagi M, Itoh S I, Azumi M and Itoh K 2007 J. Phys. Soc. Jpn. 76 064501 doi: 10.1143/JPSJ.76.064501

    CrossRef Google Scholar

    [15]
    Yu Q, Günter S and Scott B D 2003 Phys. Plasmas 10 797 doi: 10.1063/1.1554739

    CrossRef Google Scholar

    [16]
    Yu Q 2010 Nucl. Fusion 50 025014 doi: 10.1088/0029-5515/50/2/025014

    CrossRef Google Scholar

    [17]
    Li D and Huo Y P 1998 Chin. Phys. Lett. 10 Suppl. p 154

    Google Scholar

    [18]
    Bussac M, Edery D, Pellat R and J L S 1978 Phys. Rev. Lett. 40 1500 doi: 10.1103/PhysRevLett.40.1500

    CrossRef Google Scholar

    [19]
    Connor J, Ham C, Hastie R and Zocco A 2019 J. Plasma Phys. 85 905850204 doi: 10.1017/S0022377819000217

    CrossRef Google Scholar

    [20]
    Chen Y, Chowdhury J, Parker S E and Wan W 2015 Phys. Plasmas 22 042111 doi: 10.1063/1.4919023

    CrossRef Google Scholar

    [21]
    Cai H and Fu G 2012 Phys. Plasmas 19 072506 doi: 10.1063/1.4736956

    CrossRef Google Scholar

    [22]
    Hornsby W A, Migliano P, Buchholz R, Kroenert L, Weikl A, Peeters A G, Zarzoso D, Poli E and Casson F J 2015 Phys. Plasmas 22 022118 doi: 10.1063/1.4907900

    CrossRef Google Scholar

    [23]
    Cai H, Wang S, Xu Y, Cao J and Li D 2011 Phys. Rev. Lett. 106 075002 doi: 10.1103/PhysRevLett.106.075002

    CrossRef Google Scholar

    [24]
    Holod I, Zhang W L, Xiao Y and Lin Z 2009 Phys. Plasmas 16 122307 doi: 10.1063/1.3273070

    CrossRef Google Scholar

    [25]
    Deng W, Lin Z and Holod I 2012 Nucl. Fusion 52 023005 doi: 10.1088/0029-5515/52/2/023005

    CrossRef Google Scholar

    [26]
    Liu D, Zhang W, Mcclenaghan J, Wang J and Lin Z 2014 Phys. Plasmas 21 122520 doi: 10.1063/1.4905074

    CrossRef Google Scholar

    [27]
    Feng H, Zhang W, Dong C, Cao J and Li D 2017 Phys. Plasmas 24 102125 doi: 10.1063/1.4999166

    CrossRef Google Scholar

    [28]
    Scott B D, Drake J F and Hassam A B 1985 Phys. Rev. Lett. 54 1027 doi: 10.1103/PhysRevLett.54.1027

    CrossRef Google Scholar

Catalog

    Article views (231) PDF downloads (209) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return