Characterization of Scanning SQUID Probes Based on 3D Nano-Bridge Junctions in Magnetic Field

Funds: Supported by the National Key R&D Program of China (Grant Nos. 2017YFF0206105, 2016YFA0301002 and 2017YFA0303000), the Young Investigator Program of CAS (Grant No. 2016217), the Frontier Science Key Programs of the CAS (Grant No. QYZDY-SSW-JSC033), and the Strategic Priority Research Program of CAS (Grant No. XDA18000000), the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and the National Natural Science Foundation of China (Grant No. 11827805).
  • Received Date: March 19, 2020
  • Published Date: July 31, 2020
  • We develop superconducting quantum interference device (SQUID) probes based on 3D nano-bridge junctions for the scanning SQUID microscopy. The use of these nano-bridge junctions enables imaging in the presence of a high magnetic field. Conventionally, a superconducting ground layer has been employed for better magnetic shielding. In our study, we prepare a number of scanning SQUID probes with and without a ground layer to evaluate their performance in external magnetic fields. The devices show the improved magnetic modulation up to 1.4 T. It is found that the ground layer reduces the inductance, and increases the modulation depth and symmetricity of the gradiometer design in the absence of the field. However, the layer is not compatible with the use of the scanning SQUID probe in the field because it decreases its working field range. Moreover, by adding the layer, the mutual inductance between the feedback coil and the SQUID also decreases linearly as a function of the field.
  • Article Text

  • [1]
    Kirtley J R and Wikswo J P 1999 Annu. Rev. Mater. Sci. 29 117 doi: 10.1146/annurev.matsci.29.1.117

    CrossRef Google Scholar

    [2]
    Okayasu S, Nishio T, Ono M, Tanaka Y and Iyo A 2006 Physica C 437 239 doi: 10.1016/j.physc.2006.03.007

    CrossRef Google Scholar

    [3]
    Shperber Y, Vardi N, Persky E, Huber M E and Kalisky B 2019 Rev. Sci. Instrum. 90 053702 doi: 10.1063/1.5087060

    CrossRef Google Scholar

    [4]
    Cui Z, Kirtley J R, Wang Y, Kratz P A, Rosenberg A J, Watson C A, Ketchen M B and Moler A 2017 Rev. Sci. Instrum. 88 083703 doi: 10.1063/1.4986525

    CrossRef Google Scholar

    [5]
    Foroughi F, Mol J M, Müller T, Moler K A and Bluhm H 2018 Appl. Phys. Lett. 112 252601 doi: 10.1063/1.5030489

    CrossRef Google Scholar

    [6]
    Finkler A 2012 Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors Berlin: Springer

    Google Scholar

    [7]
    Kirtley J R 2010 Rep. Prog. Phys. 73 126501 doi: 10.1088/0034-4885/73/12/126501

    CrossRef Google Scholar

    [8]
    Vasyukov D, Ceccarelli L, Wyss M, Gross B, Schwarb A, Mehlin A, Rossi N, Tütüncüoglu G, Heimbach F, Zamani R R, Kovács A, Grundler D and Poggio M 2018 Nano Lett. 18 964 doi: 10.1021/acs.nanolett.7b04386

    CrossRef Google Scholar

    [9]
    Halbertal D, Cuppens J, Shalom M B, Embon L, Shadmi N, Anahory Y, Naren H R, Sarkar J, Uri A, Ronen Y, Myasoedov Y, Levitov L S, Geim A K and Zeldov E 2016 Nature 539 407 doi: 10.1038/nature19843

    CrossRef Google Scholar

    [10]
    Christensen D V, Frenkel Y, Chen Y Z, Xie Y W, Chen Z Y, Hikita Y, Smith A, Klein L, Pryds N and Kalisky B 2019 Nat. Phys. 15 269 doi: 10.1038/s41567-018-0363-x

    CrossRef Google Scholar

    [11]
    Du J, Liu X, Qin H, Wei Z, Liu Q and Song T 2018 Physica C 547 1 doi: 10.1016/j.physc.2018.01.014

    CrossRef Google Scholar

    [12]
    Marguerite A, Birkbeck J, Aharon-Steinberg A, Halbertal D, Bagani K, Marcus I, Myasoedov Y, Perello D J and Zeldov E 2019 Nature 575 628 doi: 10.1038/s41586-019-1704-3

    CrossRef Google Scholar

    [13]
    Uri A, Kim Y, Bagani K, Lewandowski C K, Grover S, Auerbach N, Lachman E O, Myasoedov Y, Taniguchi T, Smet J and Zeldov E 2019 Nat. Phys. 16 164 doi: 10.1038/s41567-019-0713-3

    CrossRef Google Scholar

    [14]
    Chen L, Wang H, Wu L and Wang Z 2016 Nano Lett. 16 7726 doi: 10.1021/acs.nanolett.6b03826

    CrossRef Google Scholar

    [15]
    Mizugaki Y, Yanagisawa K, Onomi T, Yamashita T, Yamamori H and Shoji A 1999 Jpn. J. Appl. Phys. 38 5869 doi: 10.1143/JJAP.38.5869

    CrossRef Google Scholar

    [16]
    Mizugaki Y, Kashiwa R, Usami K and Kobayashi T 2007 J. Appl. Phys. 101 114509 doi: 10.1063/1.2739221

    CrossRef Google Scholar

    [17]
    Pan Y P, Wang S Y, Liu X Y, Lin Y S, Ma L X, Feng Y, Chen L and Wang Y H 2019 Nanotechnology 30 305303 doi: 10.1088/1361-6528/ab1792

    CrossRef Google Scholar

    [18]
    Koshnick N C, Huber M E, Bert J A, Hicks C W, Edwards H and Moler K A 2008 Appl. Phys. Lett. 93 243101 doi: 10.1063/1.3046098

    CrossRef Google Scholar

    [19]
    Fourie C J, Kunert J and Meyer H G 2013 IEEE Trans. Appl. Supercond. 23 1300705 doi: 10.1109/TASC.2012.2231134

    CrossRef Google Scholar

    [20]
    Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Kaxiras E and Jarillo-Herrero P 2016 Phys. Rev. Lett. 117 116804 doi: 10.1103/PhysRevLett.117.116804

    CrossRef Google Scholar

    [21]
    Wang H, Yang R, Li G, Wu L, Liu X, Ren J and Wang Z 2018 Supercond. Sci. Technol. 31 055015 doi: 10.1088/1361-6668/aaba67

    CrossRef Google Scholar

    [22]
    Granata C and Vettoliere A 2016 Phys. Rep. 614 1 doi: 10.1016/j.physrep.2015.12.001

    CrossRef Google Scholar

    [23]
    Clem J R and Yang W 2011 Nanotechnology 22 455501 doi: 10.1088/0957-4484/22/45/455501

    CrossRef Google Scholar

    [24]
    Bagani K, Sarkar J, Uri A, Rappaport M L, Zeldov E and Myasoedov Y 2019 Phys. Rev. Appl. 12 044062 doi: 10.1103/PhysRevApplied.12.044062

    CrossRef Google Scholar

Catalog

    Article views (307) PDF downloads (392) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return