Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure

  • Received Date: February 23, 2020
  • Published Date: May 31, 2020
  • Equipped with multiple and unique features, a terahertz absorber exhibits great potential for use in the development of communication, military, and other fields where achieving perfect broadband absorption has always been a challenge. We present a metamaterial terahertz (THz) absorber comprising a cross-dipole patch, four symmetric square patches and an asymmetric open-loop patch with a good perfect absorption rate for TE and TM polarizations. The average absorption of more than 96% occurs in the frequency range from 2.4 THz to 3.8 THz, in which the absorptance peak can reach 99.9%, as indicated by simulated results. Our design has broad potential applications in THz couplers, as well as in fields like biology and security.
  • Article Text

  • [1]
    Koenig S, Lopez-Diaz D, Antes J et al. 2013 Nat. Photon. 7 977 doi: 10.1038/nphoton.2013.275

    CrossRef Google Scholar

    [2]
    Kurt H, Citrin D 2005 Appl. Phys. Lett. 87 041108 doi: 10.1063/1.1999861

    CrossRef Google Scholar

    [3]
    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP181 doi: 10.1002/adma.201290138

    CrossRef Google Scholar

    [4]
    Fan S, Li T, Zhou J et al. 2017 AIP Adv. 7 115202 doi: 10.1063/1.4996053

    CrossRef Google Scholar

    [5]
    Tao H, Landy N I, Bingham C M et al. 2008 Opt. Express 16 7181 doi: 10.1364/OE.16.007181

    CrossRef Google Scholar

    [6]
    Chen H T 2012 Opt. Express 20 7165 doi: 10.1364/OE.20.007165

    CrossRef Google Scholar

    [7]
    Smith D R, Padilla W J, Vier D et al. 2000 Phys. Rev. Lett. 84 4184 doi: 10.1103/PhysRevLett.84.4184

    CrossRef Google Scholar

    [8]
    Zhang B, Lv L, He T et al. 2015 Appl. Phys. Lett. 107 093301 doi: 10.1063/1.4930164

    CrossRef Google Scholar

    [9]
    Kapoor A, Singh G 2000 J. Lightwave Technol. 18 849 doi: 10.1109/50.848397

    CrossRef Google Scholar

    [10]
    Feng L, Xu Y L, Fegadolli W S et al. 2013 Nat. Mater. 12 108 doi: 10.1038/nmat3495

    CrossRef Google Scholar

    [11]
    Grady N K, Heyes J E, Chowdhury D R et al. 2013 Science 340 1304 doi: 10.1126/science.1235399

    CrossRef Google Scholar

    [12]
    Yachmenev A, Lavrukhin D, Glinskiy I et al. 2019 Opt. Eng. 59 061608 doi: 10.1117/1.OE.59.6.061608

    CrossRef Google Scholar

    [13]
    Li W, Coppens Z J, Besteiro L V et al. 2015 Nat. Commun. 6 8379 doi: 10.1038/ncomms9379

    CrossRef Google Scholar

    [14]
    Cong L, Pitchappa P, Lee C et al. 2017 Adv. Mater. 29 1700733 doi: 10.1002/adma.201700733

    CrossRef Google Scholar

    [15]
    Duan G, Schalch J, Zhao X et al. 2018 Opt. Express 26 2242 doi: 10.1364/OE.26.002242

    CrossRef Google Scholar

    [16]
    Landy N I, Sajuyigbe S, Mock J J et al. 2008 Phys. Rev. Lett. 100 207402 doi: 10.1103/PhysRevLett.100.207402

    CrossRef Google Scholar

    [17]
    Liu N, Mesch M, Weiss T et al. 2010 Nano Lett. 10 2342 doi: 10.1021/nl9041033

    CrossRef Google Scholar

    [18]
    Wang M, Huang S Y, Hu R et al. 2019 Chin. Phys. B 28 087804 doi: 10.1088/1674-1056/28/8/087804

    CrossRef Google Scholar

    [19]
    Low T, Avouris P 2014 ACS Nano 8 1086 doi: 10.1021/nn406627u

    CrossRef Google Scholar

    [20]
    Tang X P, Yang Z Q, Shi Z J, Lan F 2016 Chin. Phys. Lett. 33 088401 doi: 10.1088/0256-307X/33/8/088401

    CrossRef Google Scholar

    [21]
    Wang B X, Wang G Z 2018 Plasmonics 13 123 doi: 10.1007/s11468-016-0491-z

    CrossRef Google Scholar

    [22]
    Islam M R, Kabir M F, Talha K M A et al. 2020 Opt. Eng. 59 016113 doi: 10.1117/1.OE.59.1.016113

    CrossRef Google Scholar

    [23]
    Paulish A, Gusachenko A, Morozov A et al. 2019 Opt. Eng. 59 061612 doi: 10.1117/1.OE.59.6.061612

    CrossRef Google Scholar

    [24]
    Fan C Z, Tian Y C, Ren P W et al. 2019 Chin. Phys. B 28 076105 doi: 10.1088/1674-1056/28/7/076105

    CrossRef Google Scholar

    [25]
    Liu M, Yang Q, Rifat A A et al. 2019 Adv. Opt. Mater. 7 1900736 doi: 10.1002/adom.201900736

    CrossRef Google Scholar

    [26]
    Duan G, Schalch J, Zhao X et al. 2019 Sens. Actuators A 287 21 doi: 10.1016/j.sna.2018.12.039

    CrossRef Google Scholar

    [27]
    Daraei O M, Goudarzi K, Bemani M 2020 Opt. Laser Technol. 122 105853 doi: 10.1016/j.optlastec.2019.105853

    CrossRef Google Scholar

    [28]
    Zhang H, Ling F, Wang H et al. 2020 Opt. Commun. 463 125394 doi: 10.1016/j.optcom.2020.125394

    CrossRef Google Scholar

    [29]
    Zhong Q, Wang T, Jiang X et al. 2020 Opt. Commun. 458 124637 doi: 10.1016/j.optcom.2019.124637

    CrossRef Google Scholar

    [30]
    Yan M Y, Sun Z C, Wu B R et al. 2020 Front. Phys. 8 46 doi: 10.3389/fphy.2020.00046

    CrossRef Google Scholar

    [31]
    Yang P, Qin J, Schalch J, Xu J, Han T C et al. 2019 Acta Phys. Sin. 68 087802 in Chinese doi: 10.7498/aps.68.20182225

    CrossRef Google Scholar

    [32]
    Soheilifar, M R 2019 Optik 182 702 doi: 10.1016/j.ijleo.2019.01.090

    CrossRef Google Scholar

    [33]
    Hao S B, Zhang L Z, Ma Y Y, Chen M Y et al. 2019 Chin. Phys. Lett. 36 124205 doi: 10.1088/0256-307X/36/12/124205

    CrossRef Google Scholar

    [34]
    Wang D T, Wang X C, Zhang X, Yuan H R et al. 2020 Chin. Phys. Lett. 37 045201 doi: 10.1088/0256-307X/37/4/045201

    CrossRef Google Scholar

    [35]
    Li S H, Li J S 2019 Chin. Phys. B 28 094210 doi: 10.1088/1674-1056/ab33f5

    CrossRef Google Scholar

    [36]
    Xie Y M, Liu C Y, Ding Z J et al. 2016 Chin. Phys. Lett. 33 094208 doi: 10.1088/0256-307X/33/9/094208

    CrossRef Google Scholar

    [37]
    Zhao J, Zhang J, Qin C et al. 2016 Chin. Phys. Lett. 33 027801 doi: 10.1088/0256-307X/33/2/027801

    CrossRef Google Scholar

    [38]
    Wang C F, Li Q S, Wang J S et al. 2016 Chin. Phys. Lett. 33 076802 doi: 10.1088/0256-307X/33/7/076802

    CrossRef Google Scholar

    [39]
    Wang L, Song W, Hu W, Li G, Luo X et al. 2019 Chin. Phys. B 28 018503 doi: 10.1088/1674-1056/28/1/018503

    CrossRef Google Scholar

    [40]
    Meng X Q, Chen S L, Fang Y Z, Kou J L 2019 Chin. Phys. B 28 078101 doi: 10.1088/1674-1056/28/7/078101

    CrossRef Google Scholar

    [41]
    Wang W M, Zhang L L, Li Y T, Sheng Z M, Zhang J 2018 Acta Phys. Sin. 67 124202 in Chinese doi: 10.7498/aps.67.20180564

    CrossRef Google Scholar

    [42]
    Liu C, Ooi Y K, Islam S, Xing H, Jena D and Zhang J 2018 Appl. Phys. Lett. 112 011101 doi: 10.1063/1.5007835

    CrossRef Google Scholar

    [43]
    Lu X H, Jing C B, Wang L W et al. 2019 Chin. Phys. Lett. 36 098501 doi: 10.1088/0256-307X/36/9/098501

    CrossRef Google Scholar

    [44]
    Cheng X T and Liang X G 2017 Chin. Phys. B 26 120505 doi: 10.1088/1674-1056/26/12/120505

    CrossRef Google Scholar

    [45]
    Xia G, Kou W, Yang L and Du Y C 2017 Chin. Phys. B 26 104403 doi: 10.1088/1674-1056/26/10/104403

    CrossRef Google Scholar

    [46]
    Jiang S L, Li X F, Su R F, Jia X Q et al. 2017 Chin. Phys. Lett. 34 090701 doi: 10.1088/0256-307X/34/9/090701

    CrossRef Google Scholar

Catalog

    Article views (533) PDF downloads (632) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return