Molecular Dynamics Simulation of Effects of Stretching and Compressing on Thermal Conductivity of Aligned Silicon Oxygen Chains

Funds: Supported by the National Science Fund for Creative Research Groups (Grant No. 51621062).
  • Received Date: December 17, 2019
  • Published Date: March 31, 2020
  • The effects of stretching and compressing on the thermal conductivity (TC) of silicon oxygen chain are studied by means of non-equilibrium molecular dynamics simulation. It is found that stretching can improve TC, and compressing may reduce the TC and can also increase the TC. This mechanism is explained based on the variation of phonon group velocity and the specific heat per volume with stretching and compressing. The distributions of bond angle and bond length under different normalized chain lengths are given. It is found that the bond length and bond angle in the skeleton chain would deviate from their original position. In addition, the phonon density of states (PDOSs) of silicon and oxygen atoms in the chains under different normalized chain lengths are analyzed. The overall trend is that the TC increases and the peaks of PDOSs move towards higher frequency with increasing stretch strain.
  • Article Text

  • [1]
    Mao L, Zhao D, Zou X, Wang J H and Shi L Y 2017 Insul. Mater. 8 9 in Chinese %DOI: 10.16790/j.cnki.1009-9239.im.2017.08.002

    Google Scholar

    [2]
    Yang B C, Chen W Y, Zeng L and Hu Y D 2006 Annual Electronic Components Conference Xining, China 15–19 August 2006 p 111 in Chinese

    Google Scholar

    [3]
    Teng C C, Ma C C, Chiou K C and Lee T M 2012 Compos. Part B 43 265 doi: 10.1016/j.compositesb.2011.05.027}

    CrossRef Google Scholar

    [4]
    Wang J B, Bao Y B, Li Q Y and Wu C F 2012 Acta Mater. Composit. Sin. 29 6 in Chinese

    Google Scholar

    [5]
    Lei H J, Wang M L and Gong W F 2006 Henan Chem. Industry 23 20 in Chinese doi: 10.3969/j.issn.1003-3467.2006.06.007}

    CrossRef Google Scholar

    [6]
    Mu Q H, Feng S Y and Diao G Z 2007 Polym. Compos. 28 125 doi: 10.1002/pc.20276}

    CrossRef Google Scholar

    [7]
    Gao B Z, Xu J Z, Peng J J, Kang F Y, Du H D, Li J, Chiang S W, Xu C J, Hu N and Ning X S 2015 Thermochim. Acta 614 1 doi: 10.1016/j.tca.2015.06.005}

    CrossRef Google Scholar

    [8]
    Mou Q H, Feng W Y and Sun W Y 2008 China Patent No. 101284925A

    Google Scholar

    [9]
    Chen F 2008 China Patent No. 101168620A

    Google Scholar

    [10]
    Cao B Y, Kong J, Xu Y, Yung K L and Cai A 2013 Heat Transfer Eng. 34 131 doi: 10.1080/01457632.2013.703097}

    CrossRef Google Scholar

    [11]
    Henry A and Chen G 2008 Phys. Rev. Lett. 101 235502 doi: 10.1103/PhysRevLett.101.235502}

    CrossRef Google Scholar

    [12]
    Xu Y F, Kraemer D, Song B, Jiang Z, Zhou J W, Loomis J, Wang J J, Li M D, Ghasemi H, Huang X P, Li X B and Chen G 2019 Nat. Commun. 10 1 doi: 10.1038/s41467-018-07882-8}

    CrossRef Google Scholar

    [13]
    Gao Y F and Meng Q Y 2010 Acta Metall. Sin. 46 1244 doi: 10.3724/SP.J.1037.2010.01244}

    CrossRef Google Scholar

    [14]
    Lin Y P, Zhang M Y, Gao Y F, Mei L Y, Fu Y Z and Liu Y Q 2014 Acta Polym. Sin. 6 789

    Google Scholar

    [15]
    Wu J W, Tao Y, Chen C, Chen Y W and Chen Y F 2018 Southeast Univ. Engl. Ed. 34 43 doi: 10.3969/j.issn.1003-7985.2018.01.007}

    CrossRef Google Scholar

    [16]
    Dong H K, Zhao D, Xu L, Li M B and Qi Y H 2018 J. Bohai Univ. 39 41 in Chinese %DOI: 10.13831/j.cnki.issn.1673-0569.2018.03.007

    Google Scholar

    [17]
    Zhang X L, Gong C Z and Wu G Q 2017 Rare Met. Mater. Eng. 46 370 doi: 10.1016/S1875-53721730096-6}

    CrossRef Google Scholar

    [18]
    Tang K 2015 MS thesis Wuhan: Huazhong University of Science and Technology in Chinese

    Google Scholar

    [19]
    Wen J H 2014 MS thesis Xiangtan: Xiangtan University in Chinese

    Google Scholar

    [20]
    Gong T 2013 MS thesis Xiangtan: Xiangtan University in Chinese

    Google Scholar

    [21]
    Yuan K P, Zhang X L, Li L and Tang D W 2019 Phys. Chem. Chem. Phys. 21 468 doi: 10.1039/C8CP06414H}

    CrossRef Google Scholar

    [22]
    Gao Y, Yang W and Xu B 2016 Carbon 96 513 doi: 10.1016/j.carbon.2015.09.102}

    CrossRef Google Scholar

    [23]
    Feng X L, Li Z X and Guo Z Y 2001 J. Eng. Thermophys. 22 195

    Google Scholar

    [24]
    Elena A A and Florian M P 2012 Soft Mater. 10 42 doi: 10.1080/1539445X.2011.599699}

    CrossRef Google Scholar

    [25]
    Terao T, Lussetti E and Florian M P 2007 Phys. Rev. E 75 057701 doi: 10.1103/PhysRevE.75.057701}

    CrossRef Google Scholar

    [26]
    Ikeshoji T and Hafskjold B 1994 Mol. Phys. 81 251 doi: 10.1080/00268979400100171}

    CrossRef Google Scholar

    [27]
    Wirnsberger P, Frenkel D and Dellago C 2015 J. Chem. Phys. 143 124104 doi: 10.1063/1.4931597}

    CrossRef Google Scholar

    [28]
    Mark J E 1999 Polymer Data Handbook New York: Oxford University Press pp 417–424 doi: 10.1021/ja907879q}

    CrossRef Google Scholar

    [29]
    Chen X K, Liu J, Xie Z X, Zhang Y, Deng Y X and Chen K Q 2018 Appl. Phys. Lett. 113 121906 doi: 10.1063/1.5053233}

    CrossRef Google Scholar

    [30]
    Mao J H 2014 MS thesis Chongqing: Chongqing university in Chinese

    Google Scholar

    [31]
    Zhang M Y, Wang R H, Lin Y P, Li S M, Fu Y Z and Liu Y Q 2015 Polym. Mater. Sci. Eng. 31 68 in Chinese %DOI: 10.16865/j.cnki.1000-7555.2015.04.014

    Google Scholar

    [32]
    Luo T F, Esfarjani K, Shiomi J, Henry A and Chen G 2011 J. Appl. Phys. 109 074321 doi: 10.1063/1.3569862}

    CrossRef Google Scholar

    [33]
    Sun H 1995 Macromolecules 28 701 doi: 10.1021/ma00107a006}

    CrossRef Google Scholar

    [34]
    Sun H and Rigby D 1997 Spectrochim. Acta Part A 53 1301 doi: 10.1016/S1386-14259700013-9}

    CrossRef Google Scholar

    [35]
    Sun H, Jin Z, Yang C W, Akkermans R L C, Robertson S H, Spenley N A, Miller S and Todd S M 2016 J. Mol. Model. 22 47 doi: 10.1007/s00894-016-2909-0}

    CrossRef Google Scholar

    [36]
    Grønbechjensen N, Hayre N R and Farago O 2014 Comput. Phys. Commun. 185 524 doi: 10.1016/j.cpc.2013.10.006}

    CrossRef Google Scholar

    [37]
    Schneider T and Stoll E 1978 Phys. Rev. B 17 1302 doi: 10.1103/PhysRevB.17.1302}

    CrossRef Google Scholar

    [38]
    Fujino J I, Honda T and Yamashita H 3.0.CO;2-X}" target="_blank">1997 Heat. Transf-Jap Res. 26 435 doi: 10.1002/SICI1520-6556199726:7<435::AID-HTJ2>3.0.CO;2-X}

    CrossRef 1997 Heat. Transf-Jap Res. 26 435" target="_blank">Google Scholar

    [39]
    Wu D, Cao X H, Chen S Z, Tang L M, Feng Y X, Chen K Q and Zhou W X 2019 J. Mater. Chem. A 7 19037 doi: 10.1039/C9TA04642A}

    CrossRef Google Scholar

    [40]
    Li J K and Tian X F 2010 Chin. Phys. Lett. 27 036501 doi: 10.1088/0256-307X/27/3/036501}

    CrossRef Google Scholar

    [41]
    Fan Y and Dames C 2013 Phys. Rev. B 87 035437 doi: 10.1103/PhysRevB.87.035437}

    CrossRef Google Scholar

    [42]
    Kong L T 2011 Comput. Phys. Commun. 182 2201 doi: 10.1016/j.cpc.2011.04.019}

    CrossRef Google Scholar

    [43]
    Kong L T, Bartels G, Campañá C, Denniston C and Müser M H 2009 Comput. Phys. Commun. 180 1004 doi: 10.1016/j.cpc.2008.12.035}

    CrossRef Google Scholar

    [44]
    Wang S C, Liang X G, Xu X H and Ohara T 2009 J. Appl. Phys. 105 014316 doi: 10.1063/1.3063692}

    CrossRef Google Scholar

  • Related Articles

    [1]Jiahui Li, Jing Dong, Yuqiang Wang, Mingtong Zhu, Yang Yao, Ying Meng, Jiyang Ou, Guibin Lan, Xuming Luo, Jihao Xia, Hongjun Xu, Yizhan Wang, Jiafeng Feng, Hongxiang Wei, Congli He, Richeng Yu, Junwei Zhang, Yong Peng, Nianpeng Lu, Caihua Wan, Xiufeng Han, Guoqiang Yu. Enhanced Spin-Orbit Torque Induced by Interfacial Scattering in Ir/Pt Superlattice [J]. Chin. Phys. Lett., 2025, 42(5): 057401. doi: 10.1088/0256-307X/42/5/057401
    [2]QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems [J]. Chin. Phys. Lett., 2012, 29(3): 030305. doi: 10.1088/0256-307X/29/3/030305
    [3]WU Cong-Jun, Ian Mondragon-Shem, ZHOU Xiang-Fa. Unconventional Bose–Einstein Condensations from Spin-Orbit Coupling [J]. Chin. Phys. Lett., 2011, 28(9): 097102. doi: 10.1088/0256-307X/28/9/097102
    [4]Samad Javidan. Spin Filtering in a Nanowire Superlattice by Dresselhause Spin-Orbit Coupling [J]. Chin. Phys. Lett., 2011, 28(8): 088502. doi: 10.1088/0256-307X/28/8/088502
    [5]LIU Yu, CHENG Fang. Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions [J]. Chin. Phys. Lett., 2011, 28(6): 067303. doi: 10.1088/0256-307X/28/6/067303
    [6]CHENG Zhi-Da, ZHU Jing, TANG Zheng. Noncollinear Magnetism Calculation of Iron Clusters with Spin-Orbit Coupling [J]. Chin. Phys. Lett., 2011, 28(3): 037501. doi: 10.1088/0256-307X/28/3/037501
    [7]LI Jin-Liang, LI Yu-Xian. Spin Current Through Triple Quantum Dot in the Presence of Rashba Spin-Orbit Interaction [J]. Chin. Phys. Lett., 2010, 27(5): 057202. doi: 10.1088/0256-307X/27/5/057202
    [8]NI Jia-Ting, LIANG Xiao-Wan, CHEN Bin, T. Koga. Spin Interference in Rectangle Loop Based on Rashba and Dresselhaus Spin-Orbit Interactions [J]. Chin. Phys. Lett., 2009, 26(12): 127302. doi: 10.1088/0256-307X/26/12/127302
    [9]LIU Gen-Hua, ZHOU Guang-Hui. Conductance for a Quantum Wire with Weak Rashba Spin-Orbit Coupling [J]. Chin. Phys. Lett., 2005, 22(12): 3159-3162.
    [10]LIU Jin-chao. Spin-Orbit Components of Resonant Satellite Photoionization of Atomic Cu [J]. Chin. Phys. Lett., 1996, 13(12): 899-901.

Catalog

    Article views (410) PDF downloads (422) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return