Improvement of Thermoelectric Performance in BiCuSeO Oxide by Ho Doping and Band Modulation

Funds: Supported by the National Natural Science Foundation of China under Grant No. 51674181.
  • Received Date: September 30, 2019
  • Published Date: February 29, 2020
  • We try to use Ho doping combined with band modulation to adjust the thermoelectric properties for BiCuSeO. The results show that Ho doping can increase the carrier concentration and increase the electrical conductivity in the whole temperature range. Although Seebeck coefficient decreases due to the increase of carrier concentration, it still keeps relatively high values, especially in the middle and high temperature range. On this basis, the band-modulation sample can maintain relatively higher carrier concentration while maintaining relatively higher mobility, and further improve the electrical transporting performance. In addition, due to the introduction of a large number of interfaces in the band-modulation samples, the phonon scattering is enhanced effectively and the lattice thermal conductivity is reduced. Finally, the maximal power factor (PF) of 5.18 μWcm1K2 and the dimensionless thermoelectric figure of merits (ZT) of 0.81 are obtained from the 10% Ho modulation doped sample at 873 K.
  • Article Text

  • [1]
    Achour A, Kan C, Reece M J and Huang Z 2018 Adv. Energy Mater. 8 1701430 doi: 10.1002/aenm.201701430}

    CrossRef Google Scholar

    [2]
    Tang X, Xie W, Li H, Zhao W Y and Zhang Q J 2007 Appl. Phys. Lett. 90 012102 doi: 10.1063/1.2425007}

    CrossRef Google Scholar

    [3]
    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder J F 2008 Science 321 554 doi: 10.1126/science.1159725}

    CrossRef Google Scholar

    [4]
    Yu T, Decong Land Zhong Chen 2018 Chin. Phys. B 27 118105 doi: 10.1088/1674-1056/27/11/118105}

    CrossRef Google Scholar

    [5]
    Flahaut D, Mihara T, Funahashi R, Nabeshima N, Lee K H, Ohta K and Koumoto K 2006 J. Appl. Phys. 100 084911 doi: 10.1063/1.2362922}

    CrossRef Google Scholar

    [6]
    Ohtaki M, Tsubota T, Eguchi K, Koichi E and Hiromichi A 1996 J. Appl. Phys. 79 1816 doi: 10.1063/1.360976}

    CrossRef Google Scholar

    [7]
    Da Q L, Yu W Z and Hui J K 2018 Chin. Phys. B 27 047205 doi: 10.1088/1674-1056/27/4/047205}

    CrossRef Google Scholar

    [8]
    Li G J, Zhao S J, Mei A and Lan J 2009 Adv. Mater. Res. 79 2143 doi: 10.4028/www.scientific.net/AMR.79-82.2143}

    CrossRef Google Scholar

    [9]
    Li J, Sui J, Pei Y, Meng X F, David B, Nita D, Cai W and Zhao L D 2014 J. Mater. Chem. A 2 4903 doi: 10.1039/c3ta14532h}

    CrossRef Google Scholar

    [10]
    Zhao L D, He J, Berardan D, Lin Y H, Li J F, Nan C W and Nita D 2014 Energy & Environ. Sci. 7 2900 doi: 10.1039/C4EE00997E}

    CrossRef Google Scholar

    [11]
    Hsiao C L and Qi X 2016 Acta Mater. 102 88 doi: 10.1016/j.actamat.2015.08.079}

    CrossRef Google Scholar

    [12]
    Li J, Sui J, Pei Y, David B, Nita D and Zhao L D 2012 Energy & Environ. Sci. 5 8543 doi: 10.1039/c2ee22622g}

    CrossRef Google Scholar

    [13]
    Feng B, Li G Q, Hou Y H, Cheng C Z, Jiang C P, Hu J, Xiang Q S and Fan X A 2017 J. Alloys Compd. 712 386 doi: 10.1016/j.jallcom.2017.04.121}

    CrossRef Google Scholar

    [14]
    Liu Y, Lan J and Xu W 2013 Chem. Commun. 49 8075 doi: 10.1039/c3cc44578j}

    CrossRef Google Scholar

    [15]
    Liu Y, Ding J, Xu B, Lan J, Zheng Y H, Zhan B, Zhang B P, Lin Y H and Nan C W 2015 Appl. Phys. Lett. 106 233903 doi: 10.1063/1.4922492}

    CrossRef Google Scholar

    [16]
    Li Z, Xiao C, Fan S, Deng Y, Zhang W, Ye B and Xie Y 2015 J. Am. Chem. Soc. 137 6587 doi: 10.1021/jacs.5b01863}

    CrossRef Google Scholar

    [17]
    Liu Y, Zhao L D and Liu Y 2011 J. Am. Chem. Soc. 133 20112 doi: 10.1021/ja2091195}

    CrossRef Google Scholar

    [18]
    Sui J, Li J, He J, Pei Y L, David B, Wu H J, Nita D, Cai W and Zhao L D 2013 Energy & Environ. Sci. 6 2916 doi: 10.1039/c3ee41859f}

    CrossRef Google Scholar

    [19]
    Pei Y L, Wu H and Wu D 2014 J. Am. Chem. Soc. 136 13902 doi: 10.1021/ja507945h}

    CrossRef Google Scholar

    [20]
    Bo F, Guangqiang L, Zhao P, Jiang C P, Hu J, Xiang Q S and Fan X A 2018 J. Solid State Chem. 266 297 doi: 10.1016/j.jssc.2018.07.034}

    CrossRef Google Scholar

    [21]
    Dingle R, Störmer H L and Gossard A C 1978 Appl. Phys. Lett. 33 665 doi: 10.1063/1.90457}

    CrossRef Google Scholar

    [22]
    Hmood A, Kadhim A and Hassan H A 2012 J. Alloys Compd. 520 1 doi: 10.1016/j.jallcom.2011.12.044}

    CrossRef Google Scholar

    [23]
    Yang Y, Liu X and Liang X 2017 Dalton Trans. 46 2510 doi: 10.1039/C6DT04885D}

    CrossRef Google Scholar

    [24]
    Lin H, Chen H, Ma N, Zheng Y J, Shen J N, Yu J S, Xu X T and Wu L M 2017 Inorg. Chem. Front. 4 1273 doi: 10.1039/C7QI00146K}

    CrossRef Google Scholar

  • Related Articles

    [1]KANG Lin, GAO Ju, XU Hua-Rong, ZHAO Shao-Qi, CHEN Hong, WU Pei-Heng. Influences of Pressure and Substrate Temperature on Epitaxial Growth of γ-Mg2SiO4 Thin Films on Si Substrates [J]. Chin. Phys. Lett., 2007, 24(12): 3528-3531.
    [2]SHEN Quan-Tong, SUN Guo-Feng, LI Wen-Juan, DONG Guo-Cai, HAN Tie-Zhu, MA Da-Yan, SUN Yu-Jie, JIA Jin-Feng, XUE Qi-Kun. Growth of Cu Films on Si(111)-7×7 Surfaces at Low Temperature: A Scanning Tunnelling Microscopy Study [J]. Chin. Phys. Lett., 2007, 24(11): 3214-3217.
    [3]XIE Zi-Li, ZHANG Rong, XIU Xiang-Qian, LIU Bin, LI Liang, HAN Ping, GU Shu-Lin, SHI Yi, ZHENG You-Dou. Growth and Characterization of InN Thin Films on Sapphire by MOCVD [J]. Chin. Phys. Lett., 2007, 24(4): 1004-1006.
    [4]LU Xiang-Dang, ZHANG Xiang-Jiu, YANG Hong-Bin, FAN Yong-Liang, HUANG Wei-Ning, SUN Yan-Qing. MBE Growth of Highly Relaxed Si0.45 Ge0.55 Films with Very Low Misfit Dislocation Density on Si (001) Substrates [J]. Chin. Phys. Lett., 2006, 23(1): 220-222.
    [5]YU Qing-Xuan, XU Bo, WU Qi-Hong, LIAO Yuan, WANG Guan-Zhong, FANG Rong-Chuan. Growth of ZnO Thin Films on Lattice-Matched Substrates by Pulsed-Laser Deposition [J]. Chin. Phys. Lett., 2003, 20(12): 2235-2238.
    [6]MU Hai-Chuan, REN Cong-Xin, JIANG Bing-Yao, DING Xing-Zhao, YU Yue-Hui, WANG Xi, LIU Xiang-Huai, ZHOU Gui-En, JIA Yun-Bo. Growth of Biaxially Textured Yttria-Stabilized Zirconia Thin Films on Si(111) Substrate by Ion Beam Assisted Deposition [J]. Chin. Phys. Lett., 2000, 17(3): 221-223.
    [7]HU Wen-fei, LI Lin, WANG Tian-sheng, LIU Wei, TAO Hong-jie, TIAN Yong-jun, CHEN Ying-fei. Atomic Force Microscopy of Surface Reconstructed SrTiO3 Vicinal Substrates for Epitaxial Growth of YBa2Cu3O7-δ Thin Films [J]. Chin. Phys. Lett., 1999, 16(11): 853-855.
    [8]QIN Yue-ling, LIU Wei, DONG Xiao-li, LI Lin, ZHAO Bai-ru. Growth Mode of Superconducting La2-xSrxCul+yO4 Thin Films on LaAIO3 Substrate [J]. Chin. Phys. Lett., 1998, 15(7): 530-532.
    [9]LIAO Xiaoning, LÜ Fanxiu, WANG Jianjun, YANG Rang. Direct Growth of Diamond Films on Low Carbon Steel [J]. Chin. Phys. Lett., 1994, 11(12): 782-784.
    [10]WANG Wanlu, GAO Jinying, LIAO Kejun. High Growth Rate of Diamond Films by DC Plasma CVD Using Organic Compounds [J]. Chin. Phys. Lett., 1992, 9(8): 444-447.

Catalog

    Article views (307) PDF downloads (404) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return