Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11705145, 11875220, 11947301, 11434013 and 11425522), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JQ1003), and the Major Basic Research Program of Natural Science of Shaanxi Province (Grant Nos. 2017KCT-12 and 2017ZDJC-32).
  • Received Date: October 06, 2019
  • Published Date: February 29, 2020
  • We report the quantized superfluid vortex filaments induced by the axial flow effect, which exhibit intriguing loop structures on helical vortexes. Such new vortex filaments correspond to a series of soliton excitations including the multipeak soliton, W-shaped soliton, and anti-dark soliton, which have no analogue when the axial flow effect is absent. In particular, we show that the vortex filaments induced by the multipeak soliton and W-shaped soliton arise from the dual action of bending and twisting of the vortex, while the vortex filament induced by the anti-dark soliton is caused only by the bending action, which is consistent with the case of the standard bright soliton. These results will deepen our understanding of breather-induced vortex filaments and will be helpful for controllable ring-like excitations on vortices.
  • Article Text

  • [1]
    Barenghi C F and Parker N G 2016 A Primer on Quantum Fluids Berlin: Springer

    Google Scholar

    [2]
    Carusotto I and Ciuti C 2013 Rev. Mod. Phys. 85 299 doi: 10.1103/RevModPhys.85.299}

    CrossRef Google Scholar

    [3]
    Hasimoto H 1972 J. Fluid Mech. 51 477 doi: 10.1017/S0022112072002307}

    CrossRef Google Scholar

    [4]
    Salman H 2013 Phys. Rev. Lett. 111 165301 doi: 10.1103/PhysRevLett.111.165301}

    CrossRef Google Scholar

    [5]
    Salman H 2014 J. Phys.: Conf. Ser. 544 012005 doi: 10.1088/1742-6596/544/1/012005}

    CrossRef Google Scholar

    [6]
    Arms R J and Hama F R 1965 Phys. Fluids 8 553 doi: 10.1063/1.1761268}

    CrossRef Google Scholar

    [7]
    Da Rios L S 1906 Rendiconti del Circolo Matematico di Palermo 22 117 doi: 10.1007/BF03018608}

    CrossRef Google Scholar

    [8]
    Betchov R 1965 J. Fluid Mech. 22 471 doi: 10.1017/S0022112065000915}

    CrossRef Google Scholar

    [9]
    Fukumoto Y and Miyazaki T 1991 J. Fluid Mech. 222 369 doi: 10.1017/S0022112091001143}

    CrossRef Google Scholar

    [10]
    Maxworthy T, Hopfinger E J and Redekopp L G 1985 J. Fluid Mech. 151 141 doi: 10.1017/S0022112085000908}

    CrossRef Google Scholar

    [11]
    Maxworthy T, Mory M and Hopfinger E J 1983 AGARD Conference Proceedings 342 paper 29

    Google Scholar

    [12]
    Demontis F, Ortenzi G and Van Der Mee C 2015 Physica D 313 61 doi: 10.1016/j.physd.2015.09.009}

    CrossRef Google Scholar

    [13]
    Moore D W and Saffman P G 1972 Philos. Trans. Roy. Soc. London Ser. A 272 403 doi: 10.1098/rsta.1972.0055}

    CrossRef Google Scholar

    [14]
    Pismen L M 1999 Vortices in Nonlinear Fields Oxford: Clarendon

    Google Scholar

    [15]
    Hirota R 1973 J. Math. Phys. 14 805 doi: 10.1063/1.1666399}

    CrossRef Google Scholar

    [16]
    Li H, Liu C, Zhao W, Yang Z Y and Yang W L 2019 arXiv:1905.07878

    Google Scholar

    [17]
    Shah R 2015 Rogue Waves on a Vortex Filament Oxford: Oxford University Press

    Google Scholar

    [18]
    Liu C, Yang Z Y, Zhao L C, Duan L, Yang G Y and Yang W L 2016 Phys. Rev. E 94 042221 doi: 10.1103/PhysRevE.94.042221}

    CrossRef Google Scholar

    [19]
    Li Z H, Li L, Tian H P and Zhou G S 2000 Phys. Rev. Lett. 84 4096 doi: 10.1103/PhysRevLett.84.4096}

    CrossRef Google Scholar

    [20]
    Zhao L C, Li S C and Ling L M 2014 Phys. Rev. E 89 023210 doi: 10.1103/PhysRevE.89.023210}

    CrossRef Google Scholar

    [21]
    Liu C, Yang Z Y, Zhao L C and Yang W L 2015 Phys. Rev. E 91 022904 doi: 10.1103/PhysRevE.91.022904}

    CrossRef Google Scholar

    [22]
    Ma Y C 1979 Stud. Appl. Math. 60 43 doi: 10.1002/sapm197960143

    CrossRef Google Scholar

    [23]
    Kivshar Y S and Afanasjev V V 1991 Phys. Rev. A 44 R1446 doi: 10.1103/PhysRevA.44.R1446

    CrossRef Google Scholar

  • Related Articles

    [1]XU Qing, HU Xiang-Ming. Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency [J]. Chin. Phys. Lett., 2011, 28(7): 074217. doi: 10.1088/0256-307X/28/7/074217
    [2]GUO Hong-Ju, NIU Yue-Ping, WANG Li-Chun, JIN Shi-Qi, GONG Shang-Qing. Trichromatic Manipulation of Kerr Nonlinearity in a Three-Level Λ Atomic System [J]. Chin. Phys. Lett., 2008, 25(10): 3656-3659.
    [3]CHENG Ze. Thermodynamics of Phase Transitions of a Kerr Nonlinear Blackbody [J]. Chin. Phys. Lett., 2008, 25(9): 3264-3267.
    [4]WANG Wen-Feng, SUN Xin-Yuan, LUO Xiao-Bing. Generation of Cluster-Type Entangled Coherent States via Cross-Kerr Nonlinearity [J]. Chin. Phys. Lett., 2008, 25(3): 839-842.
    [5]LU Dao-Ming, ZHENG Shi-Biao. Scheme for Realizing Kerr Nonlinearity in Cavity QED [J]. Chin. Phys. Lett., 2007, 24(6): 1567-1569.
    [6]LIN Xu-Sheng, LAN Sheng. Unidirectional Transmission in Asymmetrically Confined Photonic Crystal Defects with Kerr Nonlinearity [J]. Chin. Phys. Lett., 2005, 22(11): 2847-2850.
    [7]CHENG Ze. Photonic Superfluidity in a Kerr Nonlinear Black Body [J]. Chin. Phys. Lett., 2005, 22(4): 880-883.
    [8]GUO Yu, KUANG Le-Man. Generation of High-Dimensional Photon Entangled Coherent States in Double Electromagnetically Induced Transparency System [J]. Chin. Phys. Lett., 2005, 22(3): 595-598.
    [9]GONG Qi-huang, LI Jian-liang, ZHANG Tie-qiao, YANG Hong. Ultrafast Third-Order Optical Nonlinearity of Organic Solvents Investigated by Subpicosecond Transient Optical Kerr Effect [J]. Chin. Phys. Lett., 1998, 15(1): 30-31.
    [10]XU Gu, WANG Yuzhu, YE Chao, ZHOU Shanyu, ZHAO Jiaming, LIU Yashu. Transparency Induced by Two-Photon Coherence in the V-ShapedThree-Level System [J]. Chin. Phys. Lett., 1994, 11(7): 420-423.

Catalog

    Article views (593) PDF downloads (805) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return