On the Nonlinear Growth of Multiphase Richtmyer–Meshkov Instability in Dilute Gas-Particles Flow

Funds: Supported by the National Natural Science Foundation of China under Grant Nos. 91852207, 11801036, 11502029, and the NSAF under Grant No. U1630247.
  • Received Date: September 27, 2019
  • Published Date: December 31, 2019
  • We discuss evolutions of nonlinear features in Richtmyer–Meshkov instability (RMI), which are known as spikes and bubbles. In single-phase RMI, the nonlinear growth has been extensively studied but the relevant investigation in multiphase RMI is insufficient. Therefore, we illustrate the dynamic coupling behaviors between gas phase and particle phase and then analyze the growth of the nonlinear features theoretically. A universal model is proposed to describe the nonlinear finger (spike and bubble) growth velocity qualitatively in multiphase RMI. Both the effects of gas and particles have been taken into consideration in this model. Further, we derive the analytical expressions of the nonlinear growth model in limit cases (equilibrium flow and frozen flow). A novel compressible multiphase particle-in-cell (CMP-PIC) method is used to validate the applicability of this model. Numerical finger growth velocity matches well with our model. The present study reveals that particle volume fraction, particle density and Stokes number are the three key factors, which dominate the interphase momentum exchange and further induce the unique property of multiphase RMI.
  • Article Text

  • [1]
    Zhou Y 2017 Phys. Rep. 720 1 doi: 10.1016/j.physrep.2017.07.005}

    CrossRef Google Scholar

    [2]
    Luo X S, Zhang F, Ding J C, Si T, Yang J M, Zhai Z G and Wen C Y 2018 J. Fluid Mech. 849 231 doi: 10.1017/jfm.2018.424}

    CrossRef Google Scholar

    [3]
    Zhang Q and Guo W X 2016 J. Fluid Mech. 786 47 doi: 10.1017/jfm.2015.641}

    CrossRef Google Scholar

    [4]
    Zhai Z G, Zhang F, Zhou Z B, Ding J C and Wen C Y 2019 Sci. Chin.-Phys. Mech. Astron. 62 124712 doi: 10.1007/s11433-019-9441-4}

    CrossRef Google Scholar

    [5]
    Li M and Ye W H 2019 Chin. Phys. Lett. 36 025201 doi: 10.1088/0256-307X/36/2/025201}

    CrossRef Google Scholar

    [6]
    Tian B L, Zhang X T, Qi J and Wang S H 2011 Chin. Phys. Lett. 28 114701 doi: 10.1088/0256-307X/28/11/114701}

    CrossRef Google Scholar

    [7]
    Gao F J, Zhang Y S, He Z W et al. 2016 Phys. Fluids 28 114101 doi: 10.1063/1.4966226}

    CrossRef Google Scholar

    [8]
    Raman K S, Smalyuk V A, Casey D T et al. 2014 Phys. Plasmas 21 072710 doi: 10.1063/1.4890570}

    CrossRef Google Scholar

    [9]
    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297 doi: 10.1002/cpa.3160130207}

    CrossRef Google Scholar

    [10]
    Meshkov E E 1972 Fluid Dyn. 4 101 doi: 10.1007/BF01015969}

    CrossRef Google Scholar

    [11]
    Saffman P G 1962 J. Fluid Mech. 13 120 doi: 10.1017/S0022112062000555}

    CrossRef Google Scholar

    [12]
    Ukai S, Balakrishnan K and Menon S 2010 Phys. Fluids 22 104103 doi: 10.1063/1.3507318}

    CrossRef Google Scholar

    [13]
    Larsen M L, Shaw R A, Kostinski A B and Glienke S 2018 Phys. Rev. Lett. 121 204501 doi: 10.1103/PhysRevLett.121.204501}

    CrossRef Google Scholar

    [14]
    Mcfarland J A, Black W J, Dahal J and Morgan B E 2016 Phys. Fluids 28 024105 doi: 10.1063/1.4941131}

    CrossRef Google Scholar

    [15]
    Parmar M, Haselbacher A and Balachandar S 2012 J. Fluid Mech. 699 352 doi: 10.1017/jfm.2012.109}

    CrossRef Google Scholar

    [16]
    Vorobieff P, Anderson M, Conroy J, White R, Truman C and Kumar S 2011 Phys. Rev. Lett. 106 184503 doi: 10.1103/PhysRevLett.106.184503}

    CrossRef Google Scholar

    [17]
    Lee C B, Peng H W, Yuan H J, Wu J Z, Zhou M D and Hussain F 2011 J. Fluid Mech. 677 39 doi: 10.1017/jfm.2011.43}

    CrossRef Google Scholar

    [18]
    Zhong H J, Lee C B, Su Z, Chen S Y, Zhou M D and Wu J Z 2013 J. Fluid Mech. 716 228 doi: 10.1017/jfm.2012.543}

    CrossRef Google Scholar

    [19]
    Xu T, Lien F S, Ji H and Zhang F 2013 Shock Waves 23 619 doi: 10.1007/s00193-013-0472-5}

    CrossRef Google Scholar

    [20]
    Boiko V M, Kiselev V P, Kiselev S P, Papyrin N A, Poplavsky S V and Fomin V M 1997 Shock Waves 7 275 doi: 10.1007/s001930050082}

    CrossRef Google Scholar

    [21]
    Kandan K, Khaderi S N, Wadley H and Deshpande V S 2017 J. Mech. Phys. Solids 109 217 doi: 10.1016/j.jmps.2017.08.011}

    CrossRef Google Scholar

    [22]
    Zhang F, Frost D L, Thibault P A and Murray S B 2001 Shock Waves 10 431 doi: 10.1007/PL00004050}

    CrossRef Google Scholar

    [23]
    Saito T 2002 J. Comput. Phys. 176 129 doi: 10.1006/jcph.2001.6971}

    CrossRef Google Scholar

    [24]
    Saito T, Marumoto M and Takayama K 2003 Shock Waves 13 299 doi: 10.1007/s00193-003-0217-y}

    CrossRef Google Scholar

    [25]
    Saurel R, Chinnayya A and Carmouze Q 2017 Phys. Fluids 29 063301 doi: 10.1063/1.4985289}

    CrossRef Google Scholar

    [26]
    Zhou Y 2017 Phys. Rep. 723 1 doi: 10.1016/j.physrep.2017.07.008}

    CrossRef Google Scholar

    [27]
    Meng B Q, Zeng J S, Tian B L, Li L, He Z W and Guo X H 2019 Phys. Fluids 31 074102 doi: 10.1063/1.5099996}

    CrossRef Google Scholar

    [28]
    Nishihara K, Wouchuk J G, Matsuoka C, Ishizaki and Zhakhovsky V V 2010 Philos. Trans. R. Soc. A 368 1769 doi: 10.1098/rsta.2009.0252}

    CrossRef Google Scholar

    [29]
    Balakrishnan K and Menon S 2011 Laser Part. Beams 29 201 doi: 10.1017/S0263034611000176}

    CrossRef Google Scholar

    [30]
    Mikaelian K O 1998 Phys. Rev. Lett. 80 508 doi: 10.1103/PhysRevLett.80.508}

    CrossRef Google Scholar

    [31]
    Mikaelian K O 2008 Phys. Rev. E 78 015303 doi: 10.1103/PhysRevE.78.015303}

    CrossRef Google Scholar

    [32]
    Layzer D 1955 Astrophys. J. 122 1 doi: 10.1086/146048}

    CrossRef Google Scholar

    [33]
    Goncharov V N 2002 Phys. Rev. Lett. 88 134502 doi: 10.1103/PhysRevLett.88.134502}

    CrossRef Google Scholar

    [34]
    Zhang Q 1998 Phys. Rev. Lett. 81 3391 doi: 10.1103/PhysRevLett.81.3391}

    CrossRef Google Scholar

    [35]
    Snider D M, ORourke P J and Andrews M J 1998 Int. J. Multiphase Flow 24 1359 doi: 10.1016/S0301-93229800030-5}

    CrossRef Google Scholar

    [36]
    Guo H Y, Wang L F, Ye W H, Wu J F, Zhang W Y 2017 Chin. Phys. Lett. 34 045201 doi: 10.1088/0256-307X/34/4/045201}

    CrossRef Google Scholar

    [37]
    Yang X, Xiao D L, Ding N, Liu J 2017 Chin. Phys. B 26 075202 doi: 10.1088/1674-1056/26/7/075202}

    CrossRef Google Scholar

    [38]
    Mikaelian K O 1990 Phys. Rev. A 42 7211 doi: 10.1103/PhysRevA.42.7211}

    CrossRef Google Scholar

  • Related Articles

    [1]LU Ran, JIANG Gen-Shan, LI Bin, ZHAO Quan-Liang, ZHANG De-Qing, YUAN Jie, CAO Mao-Sheng. Electrical Properties of Lead Zirconate Titanate Thick Film Containing Micro- and Nano-Crystalline Particles [J]. Chin. Phys. Lett., 2012, 29(5): 058101. doi: 10.1088/0256-307X/29/5/058101
    [2]ZHANG Hong-Ling, WANG Gen-Shui, CHEN Xue-Feng, CAO Fei, DONG Xian-Lin, GU Yan, HE Hong-Liang, LIU Yu-Sheng. Mechanism of the Pyroelectric Response under Direct-Current Bias in La-Modified Lead Zirconate Titanate Stannate Ceramics [J]. Chin. Phys. Lett., 2011, 28(9): 097701. doi: 10.1088/0256-307X/28/9/097701
    [3]LI Yi-Gui, SUN Jian, YANG Chun-Sheng, LIU Jing-Quan, SUGIYAMA Susumu, TANAKA Katsuhiko. Fabrication and Characterization of a Lead Zirconate Titanate Micro Energy Harvester Based on Eutectic Bonding [J]. Chin. Phys. Lett., 2011, 28(6): 068103. doi: 10.1088/0256-307X/28/6/068103
    [4]XU Jian-Xiu, ZHAO Liang, ZHANG Cheng-Ju. Dielectric and Piezoelectric Properties of Sodium Bismuth Titanate Ceramics with KCe Substitution [J]. Chin. Phys. Lett., 2008, 25(12): 4414-4416.
    [5]MING Bao-Quan, WANG Jin-Feng, ZANG Guo-Zhong. Effects of Li Substitution and Sintering Temperature on Properties of Bi0.5(Na,K)0.5TiO3 Lead-Free Piezoelectric Ceramics [J]. Chin. Phys. Lett., 2008, 25(10): 3776-3778.
    [6]DU Juan, WANG Jin-Feng, ZANG Guo-Zhong, QI Peng, ZHANG Shu-Jun, Thomas R. Shrout. (Na0.52K0.44Li0.04)Nb0.9-xSbxTa0.1O3 Lead-Free Piezoelectric Ceramics with High Performance and High Curie Temperature [J]. Chin. Phys. Lett., 2008, 25(4): 1446-1448.
    [7]LI Qiu-jun, ZHU De-rui, MO Dang, XU Yu-huan, J. D. Mackenzie. Spectroellipsometric Study of Lead Lanthanum Zirconate Titanate Amorphous Ferroelectric-Like Thin Films [J]. Chin. Phys. Lett., 1998, 15(8): 600-602.
    [8]GUI Hong, ZHANG Xiao-wen, GU Bing-lin. Theoretical Study on the Ordered Structure in Lanthanum-Modified Lead Zirconate Titanate [J]. Chin. Phys. Lett., 1996, 13(9): 696-699.
    [9]ZHENG Lirong, CHEN Yiqing, LIN Chenglu, ZOU Shichang. Influence of Rapid Thermal Annealing on Structural and Interfacial Properties of Lead-Zirconate-Titanate Thin Films Prepared by Excimer Laser Deposition [J]. Chin. Phys. Lett., 1994, 11(8): 518-521.
    [10]SONG Yongyuan, JIANG Quanzhong, SUN Daliang, CHEN Huanchu, ZHANG Peilin, ZHONG Weilie. STUDIES ON PHOTOREFRACTIVE CRYSTAL LEAD BARIUM NIOBATE [J]. Chin. Phys. Lett., 1990, 7(9): 414-417.

Catalog

    Article views (298) PDF downloads (549) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return