Express Letter

Experimental Realization of an Intrinsic Magnetic Topological Insulator

    Show all affliationsShow less
Funds: Supported by the Ministry of Science and Technology of China, the National Science Foundation of China, and the Beijing Advanced Innovation Center for Future Chip (ICFC).
  • Received Date: May 26, 2019
  • Published Date: June 30, 2019
  • An intrinsic magnetic topological insulator (TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel topological quantum effects but remained elusive experimentally for a long time. Here we report the experimental realization of thin films of an intrinsic magnetic TI, MnBi2Te4, by alternate growth of a Bi2Te3 quintuple layer and a MnTe bilayer with molecular beam epitaxy. The material shows the archetypical Dirac surface states in angle-resolved photoemission spectroscopy and is demonstrated to be an antiferromagnetic topological insulator with ferromagnetic surfaces by magnetic and transport measurements as well as first-principles calculations. The unique magnetic and topological electronic structures and their interplays enable the material to embody rich quantum phases such as quantum anomalous Hall insulators and axion insulators at higher temperature and in a well-controlled way.
  • Article Text

  • [1]
    Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 doi: 10.1103/RevModPhys.82.3045

    CrossRef Google Scholar

    [2]
    Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 doi: 10.1103/RevModPhys.83.1057

    CrossRef Google Scholar

    [3]
    Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424 doi: 10.1103/PhysRevB.78.195424

    CrossRef Google Scholar

    [4]
    Haldane F D M 1988 Phys. Rev. Lett. 61 2015 doi: 10.1103/PhysRevLett.61.2015

    CrossRef Google Scholar

    [5]
    Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802 doi: 10.1103/PhysRevLett.101.146802

    CrossRef Google Scholar

    [6]
    Yu R et al. 2010 Science 329 61 doi: 10.1126/science.1187485

    CrossRef Google Scholar

    [7]
    Chang C Z et al. 2013 Science 340 167 doi: 10.1126/science.1234414

    CrossRef Google Scholar

    [8]
    Qi X L, Hughes T L and Zhang S C 2010 Phys. Rev. B 82 184516 doi: 10.1103/PhysRevB.82.184516

    CrossRef Google Scholar

    [9]
    He Q L et al. 2017 Science 357 294 doi: 10.1126/science.aag2792

    CrossRef Google Scholar

    [10]
    Lee I et al. 2015 Proc. Natl. Acad. Sci. USA 112 1316 doi: 10.1073/pnas.1424322112

    CrossRef Google Scholar

    [11]
    Lachman E O et al. 2015 Sci. Adv. 1 e1500740 doi: 10.1126/sciadv.1500740

    CrossRef Google Scholar

    [12]
    Grauer S et al. 2015 Phys. Rev. B 92 201304 doi: 10.1103/PhysRevB.92.201304

    CrossRef Google Scholar

    [13]
    Feng X et al. 2016 Adv. Mater. 28 6386 doi: 10.1002/adma.201600919

    CrossRef Google Scholar

    [14]
    Liu Y et al. 2018 Nature 555 638 doi: 10.1038/nature25987

    CrossRef Google Scholar

    [15]
    Tang P, Zhou Q, Xu G and Zhang S C 2016 Nat. Phys. 12 1100 doi: 10.1038/nphys3839

    CrossRef Google Scholar

    [16]
    Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806 doi: 10.1103/PhysRevLett.107.186806

    CrossRef Google Scholar

    [17]
    Neupane M et al. 2012 Phys. Rev. B 85 235406 doi: 10.1103/PhysRevB.85.235406

    CrossRef Google Scholar

    [18]
    Lee D S et al. 2013 CrystEngComm 15 5532 doi: 10.1039/c3ce40643a

    CrossRef Google Scholar

    [19]
    Hagmann J A et al. 2017 New J. Phys. 19 085002 doi: 10.1088/1367-2630/aa759c

    CrossRef Google Scholar

    [20]
    Hirahara T et al. 2017 Nano Lett. 17 3493 doi: 10.1021/acs.nanolett.7b00560

    CrossRef Google Scholar

    [21]
    Otrokov M et al. 2017 2D Mater. 4 025082 doi: 10.1088/2053-1583/aa6bec

    CrossRef Google Scholar

    [22]
    Li Y Y et al. 2010 Adv. Mater. 22 4002 doi: 10.1002/adma.201000368

    CrossRef Google Scholar

    [23]
    Zhang H et al. 2009 Nat. Phys. 5 438 doi: 10.1038/nphys1270

    CrossRef Google Scholar

    [24]
    Chen Y L et al. 2009 Science 325 178 doi: 10.1126/science.1173034

    CrossRef Google Scholar

    [25]
    Fu L 2009 Phys. Rev. Lett. 103 266801 doi: 10.1103/PhysRevLett.103.266801

    CrossRef Google Scholar

    [26]
    Chen J et al. 2010 Phys. Rev. Lett. 105 176602 doi: 10.1103/PhysRevLett.105.176602

    CrossRef Google Scholar

    [27]
    Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 doi: 10.1103/RevModPhys.82.1539

    CrossRef Google Scholar

    [28]
    Li J et al. 2019 Sci. Adv. to be published 2018 arXiv:1808.08608 [cond-mat.mtrl-sci]

    Google Scholar

    [29]
    Zhang D et al. 2019 Phys. Rev. Lett. 122 206401 doi: 10.1103/PhysRevLett.122.206401

    CrossRef Google Scholar

    [30]
    Huang B et al. 2017 Nature 546 270 doi: 10.1038/nature22391

    CrossRef Google Scholar

  • Related Articles

    [1]WANG Qiang, LIN Bai-Ke, ZHAO Yang, LI Ye, WANG Shao-Kai, WANG Min-Ming, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. Magneto-Optical Trapping of 88Sr atoms with 689nm Laser [J]. Chin. Phys. Lett., 2011, 28(3): 033201. doi: 10.1088/0256-307X/28/3/033201
    [2]XIA Tian, ZHOU Shu-Yu, CHEN Peng, LI Lin, HONG Tao, WANG Yu-Zhu. Continuous Imaging of a Single Neutral Atom in a Variant Magneto-Optical Trap\hyperlinks* [J]. Chin. Phys. Lett., 2010, 27(2): 023701. doi: 10.1088/0256-307X/27/2/023701
    [3]ZHOU Shu-Yu, XIA Tian, XU Zhen, WANG Yu-Zhu. Experimental Properties of Optical Phase Conjugation in Cold Atoms in a Magneto-Optical Trap [J]. Chin. Phys. Lett., 2010, 27(1): 014211. doi: 10.1088/0256-307X/27/1/014211
    [4]ZHAO Peng-Yi, XIONG Zhuan-Xian, LIANG Jie, HE Ling-Xiang, LU Bao-Long. Magneto-Optical Trapping of Ytterbium Atoms with a 398.9nm Laser [J]. Chin. Phys. Lett., 2008, 25(10): 3631-3634.
    [5]YAN Hui, YANG Guo-Qing, WANG Jin, ZHAN Ming-Sheng. Directly Trapping Atoms in a U-Shaped Magneto-Optical Trap Using a Mini Atom Chip [J]. Chin. Phys. Lett., 2008, 25(9): 3219-3222.
    [6]MA Jie, WANG Li-Rong, JI Wei-Bang, XIAO Lian-Tuan, JIA Suo-Tang. Saturation of Photoassociation in Cs Magneto-optical Trap [J]. Chin. Phys. Lett., 2007, 24(7): 1904-1907.
    [7]XIE Chun-Xia, WANG Zhengling, YIN Jian-Ping. A Novel Gravito-Optical Surface Trap for Neutral Atoms [J]. Chin. Phys. Lett., 2006, 23(4): 822-825.
    [8]FU Jun-xian, CHEN Xu-zong, LI Yi-min, YANG Dong-hai, WANG Yi-qiu. Magneto-Optical Trap for Cesium Atoms Without a Separate Repumping Laser [J]. Chin. Phys. Lett., 1999, 16(11): 805-807.
    [9]HOU Ji-dong, LI Yi-min, YANG Dong-hai, WANG Yi-qiu. An Improved Magneto-Optical Trap for Cesium Atom [J]. Chin. Phys. Lett., 1998, 15(5): 335-337.
    [10]GAN Jian-hua, LI Yi-min, CHEN Xu-zong, LIU Hai-feng, YANG Dong-hai, WANG Yi-qiu. Magneto-Optical Trap of Cesium Atoms [J]. Chin. Phys. Lett., 1996, 13(11): 821-824.
  • Other Related Supplements

Catalog

    Article views (4672) PDF downloads (4173) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return