Contactless Microwave Detection of Shubnikov–De Haas Oscillations in Three-Dimensional Dirac Semimetal ZrTe5

Funds: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0401003, the National Natural Science Foundation of China under Grant Nos 11774353, 11574320, 11374302, 11804340, U1432251 and U1732274, the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology under Grant No 2018CXFX002, and the China Postdoctoral Science Foundation under Grant No 2018M630718.
  • Received Date: January 23, 2019
  • Published Date: May 31, 2019
  • We report Shubnikov–de Haas (SdH) oscillations of a three-dimensional (3D) Dirac semimetal candidate of layered material ZrTe5 single crystals through contactless electron spin resonance (ESR) measurements with the magnetic field up to 1.4 T. The ESR signals manifest remarkably anisotropic characteristics with respect to the direction of the magnetic field, indicating an anisotropic Fermi surface in ZrTe5. Further experiments demonstrate that the ZrTe5 single crystals have the signature of massless Dirac fermions with nontrivial π Berry phase, key evidence for 3D Dirac/Weyl fermions. Moreover, the onset of quantum oscillation of our ZrTe5 crystals revealed by the ESR can be derived down to 0.2 T, much smaller than the onset of SdH oscillation determined by conventional magnetoresistance measurements. Therefore, ESR measurement is a powerful tool to study the topologically nontrivial electronic structure in Dirac/Weyl semimetals and other topological materials with low bulk carrier density.
  • Article Text

  • [1]
    Wan X G, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 doi: 10.1103/PhysRevB.83.205101

    CrossRef Google Scholar

    [2]
    Weng H M, Dai X and Fang Z 2016 J. Phys.: Condens. Matter 28 303001 doi: 10.1088/0953-8984/28/30/303001

    CrossRef Google Scholar

    [3]
    Burkov A A 2016 Nat. Mater. 15 1145 doi: 10.1038/nmat4788

    CrossRef Google Scholar

    [4]
    He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402 doi: 10.1103/PhysRevLett.113.246402

    CrossRef Google Scholar

    [5]
    Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280 doi: 10.1038/nmat4143

    CrossRef Google Scholar

    [6]
    Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023 doi: 10.1103/PhysRevX.5.031023

    CrossRef Google Scholar

    [7]
    Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C and Yan B 2015 Nat. Phys. 11 645 doi: 10.1038/nphys3372

    CrossRef Google Scholar

    [8]
    Yuan Z J, Lu H, Liu Y J, Wang J F and Jia S 2016 Phys. Rev. B 93 184405 doi: 10.1103/PhysRevB.93.184405

    CrossRef Google Scholar

    [9]
    Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413 doi: 10.1126/science.aac6089

    CrossRef Google Scholar

    [10]
    Li C Z, Wang L X, Liu H, Wang J, Liao Z M and Yu D P 2015 Nat. Commun. 6 10137 doi: 10.1038/ncomms10137

    CrossRef Google Scholar

    [11]
    Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q and Wang J 2016 Nat. Commun. 7 10301 doi: 10.1038/ncomms10301

    CrossRef Google Scholar

    [12]
    Zhang C L, Xu S Y, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C C, Huang S M, Chang T R, Chang G, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J, Lin H, Zhang C, Lu H Z, Shen S Q, Neupert T, Hasan M Z and Jia S 2016 Nat. Commun. 7 10735 doi: 10.1038/ncomms10735

    CrossRef Google Scholar

    [13]
    Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosi? I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D and Valla T 2016 Nat. Phys. 12 550 doi: 10.1038/nphys3648

    CrossRef Google Scholar

    [14]
    Zheng G L, Lu J W, Zhu X D, Ning W, Han Y Y, Zhang H W, Zhang J L, Xi C Y, Yang J Y, Du H F, Yang K, Zhang Y H and Tian M L 2016 Phys. Rev. B 93 115414 doi: 10.1103/PhysRevB.93.115414

    CrossRef Google Scholar

    [15]
    Wu M, Zheng G L, Chu W W, Liu Y Q, Gao W S, Zhang H W, Lu J W, Han Y Y, Zhou J H, Ning W and Tian M L 2018 Phys. Rev. B 98 161110R doi: 10.1103/PhysRevB.98.161110

    CrossRef Google Scholar

    [16]
    Li H, Wang H W, He H, Wang J and Shen S Q 2018 Phys. Rev. B 97 201110R doi: 10.1103/PhysRevB.97.201110

    CrossRef Google Scholar

    [17]
    Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205 doi: 10.1103/PhysRevLett.107.127205

    CrossRef Google Scholar

    [18]
    Xu G, Weng H M, Wang Z J, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806 doi: 10.1103/PhysRevLett.107.186806

    CrossRef Google Scholar

    [19]
    Liang T, Lin J, Gibson Q, Gao T, Hirschberger M, Liu M, Cava R J and Ong N P 2017 Phys. Rev. Lett. 118 136601 doi: 10.1103/PhysRevLett.118.136601

    CrossRef Google Scholar

    [20]
    Liang T, Lin J, Gibson Q, Kushwaha S, Liu M, Wang W, Xiong H, Sobota J A, Hashimoto M, Kirchmann P S, Shen Z X, Cava R J and Ong N P 2018 Nat. Phys. 14 451 doi: 10.1038/s41567-018-0078-z

    CrossRef Google Scholar

    [21]
    Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5 5161 doi: 10.1038/ncomms6161

    CrossRef Google Scholar

    [22]
    Moll P J W, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A and Analytis J G 2016 Nature 535 266 doi: 10.1038/nature18276

    CrossRef Google Scholar

    [23]
    Zheng G L, Wu M, Zhang H W, Chu W W, Gao W S, Lu J W, Han Y Y, Yang J Y, Du H F, Ning W, Zhang Y H and Tian M L 2017 Phys. Rev. B 96 121407R doi: 10.1103/PhysRevB.96.121407

    CrossRef Google Scholar

    [24]
    Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147 doi: 10.1103/PhysRevLett.82.2147

    CrossRef Google Scholar

    [25]
    Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821 doi: 10.1126/science.1189792

    CrossRef Google Scholar

    [26]
    Analytis J G, McDonald R D, Riggs S C, Chu J H, Boebinger G S and Fisher I R 2010 Nat. Phys. 6 960 doi: 10.1038/nphys1861

    CrossRef Google Scholar

    [27]
    Pariari A, Dutta P and Mandal P 2015 Phys. Rev. B 91 155139 doi: 10.1103/PhysRevB.91.155139

    CrossRef Google Scholar

    [28]
    Hu J, Tang Z J, Liu J Y, Liu X, Zhu Y L, Graf D, Myhro K, Tran S, Lau C N, Wei J and Mao Z Q 2016 Phys. Rev. Lett. 117 016602 doi: 10.1103/PhysRevLett.117.016602

    CrossRef Google Scholar

    [29]
    Liu J Y, Hu J, Zhang Q, Graf D, Cao H B, Radmanesh S M A, Adams D J, Zhu Y L, Cheng G F, Liu X, Phelan W A, Wei J, Jaime M, Balakirev F, Tennant D A, DiTusa J F, Chiorescu I, Spinu L and Mao Z Q 2017 Nat. Mater. 16 905 doi: 10.1038/nmat4953

    CrossRef Google Scholar

    [30]
    Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F and Wang N L 2015 Phys. Rev. Lett. 115 176404 doi: 10.1103/PhysRevLett.115.176404

    CrossRef Google Scholar

    [31]
    Chen R Y, Zhang S J, Schneeloch J A, Zhang C, Li Q, Gu G D and Wang N L 2015 Phys. Rev. B 92 075107 doi: 10.1103/PhysRevB.92.075107

    CrossRef Google Scholar

    [32]
    Omling P, Meyer B and Emanuelsson P 1991 Appl. Phys. Lett. 58 931 doi: 10.1063/1.104481

    CrossRef Google Scholar

    [33]
    Linke H, Omling P, Ramvall P, Meyer B K, Drechsler M, Wetzel C, Rudeloff R and Scholz F 1993 J. Appl. Phys. 73 7533 doi: 10.1063/1.354001

    CrossRef Google Scholar

    [34]
    Linke H, Kowalski B, Ramvall P, Emanuelsson P, Omling P, Oettinger K, Drechsler M and Meyer B K 1993 Appl. Phys. Lett. 62 2725 doi: 10.1063/1.109245

    CrossRef Google Scholar

    [35]
    Drabinska A, Wo?os A, Kaminska M, Strupinski W and Baranowski J M 2012 Phys. Rev. B 86 045421 doi: 10.1103/PhysRevB.86.045421

    CrossRef Google Scholar

    [36]
    Wolos A, Szyszko S, Drabinska A, Kaminska M, Strzelecka S G, Hruban A, Materna A and Piersa M 2012 Phys. Rev. Lett. 109 247604 doi: 10.1103/PhysRevLett.109.247604

    CrossRef Google Scholar

    [37]
    Shestakov A V, Fazlizhanov I I, Yatsyk I V, Gilmutdinov I F, Ibragimova M I, Shustov V A and Eremina R M 2018 J. Semicond. 39 052001 doi: 10.1088/1674-4926/39/5/052001

    CrossRef Google Scholar

    [38]
    Kamm G N, Gillespie D J, Ehrlich A C, Wieting T J and Levy F 1985 Phys. Rev. B 31 7617 doi: 10.1103/PhysRevB.31.7617

    CrossRef Google Scholar

    [39]
    Weng H M, Dai X and Fang Z 2014 Phys. Rev. X 4 011002 doi: 10.1103/PhysRevX.4.011002

    CrossRef Google Scholar

    [40]
    McIlroy D N, Moore S, Zhang D, Wharton J, Kempton B, Littleton R, Wilson M, Tritt T M and Olson C G 2004 J. Phys.: Condens. Matter 16 L359 doi: 10.1088/0953-8984/16/30/L02

    CrossRef Google Scholar

    [41]
    Zheng G L, Zhu X D, Liu Y Q, Lu J W, Ning W, Zhang H W, Gao W S, Han Y Y, Yang J Y, Du H F, Yang K, Zhang Y H and Tian M L 2017 Phys. Rev. B 96 121401R doi: 10.1103/PhysRevB.96.121401

    CrossRef Google Scholar

    [42]
    Shoenberg D 1984 Magnetic Oscillations in Metals Cambridge: Cambridge University Press

    Google Scholar

    [43]
    Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490 doi: 10.1126/science.1242247

    CrossRef Google Scholar

  • Related Articles

    [1]Krishnendu Bhattacharyya, G. C. Layek. MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing [J]. Chin. Phys. Lett., 2011, 28(8): 084705. doi: 10.1088/0256-307X/28/8/084705
    [2]T. Hayat, Liaqat Ali. Khan, R. Ellahi, S. Obaidat. Exact Solutions on MHD Flow Past an Accelerated Porous Plate in a Rotating Frame [J]. Chin. Phys. Lett., 2011, 28(5): 054701. doi: 10.1088/0256-307X/28/5/054701
    [3]Krishnendu Bhattacharyya, Swati Mukhopadhyay, G. C. Layek. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate [J]. Chin. Phys. Lett., 2011, 28(2): 024701. doi: 10.1088/0256-307X/28/2/024701
    [4]Choon Ki Ahn. A Passivity Based Synchronization for Chaotic Behavior in Nonlinear BlochEquations [J]. Chin. Phys. Lett., 2010, 27(1): 010503. doi: 10.1088/0256-307X/27/1/010503
    [5]LI Bo-Tong, ZHENG Lian-Cun, ZHANG Xin-Xin. Multiple Solutions of Laminar Flow in Channels with a Transverse Magnetic Field [J]. Chin. Phys. Lett., 2009, 26(9): 094101. doi: 10.1088/0256-307X/26/9/094101
    [6]Anuar Ishak, Roslinda Nazar, Ioan Pop. MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux [J]. Chin. Phys. Lett., 2009, 26(1): 014702. doi: 10.1088/0256-307X/26/1/014702
    [7]WU Zheng-Wei, ZHANG Wen-Lu, LI Ding, YANG Wei-Hong. Effect of Magnetic Field and Equilibrium Flow on Rayleigh-Taylor Instability [J]. Chin. Phys. Lett., 2004, 21(10): 2001-2004.
    [8]CHEN Yin-Hua, WANG Ge, TAN Li-Wei. Nonlinear Inertial Alfvén Waves in Plasmas with Sheared Magnetic Field and Flow [J]. Chin. Phys. Lett., 2004, 21(5): 888-890.
    [9]CHEN Weizhong, WEI Rongjue, WANG Benren. Chaotic Behavior of Solitary Wave in Liquid [J]. Chin. Phys. Lett., 1995, 12(11): 677-680.
    [10]QIU Xiaoming (S.M.CHIU), WANG Xiaogang. A NEW STRANGE ATTRACTOR IN MHD FLOW IN SHEARED MAGNETIC FIELD [J]. Chin. Phys. Lett., 1986, 3(3): 105-108.

Catalog

    Article views (465) PDF downloads (610) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return