Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene
-
Abstract
We present a planar model system of a silica covered with a monolayer of nonlinear graphene to achieve a tunable Goos–Hänchen (GH) shift in the terahertz range. It is theoretically found that the transition between a negative shift and a large positive one can be realized by altering the intensity of incident light. Moreover, by controlling the chemical potential of graphene and the incident angle of light, we can further control the tunable GH shift dynamically. Numerical simulations for GH shifts based on Gaussian waves are in good agreement with our theoretical calculations.
Article Text
-
-
-
About This Article
Cite this article:
Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 064202. DOI: 10.1088/0256-307X/36/6/064202
Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 064202. DOI: 10.1088/0256-307X/36/6/064202
|
Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 064202. DOI: 10.1088/0256-307X/36/6/064202
Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 064202. DOI: 10.1088/0256-307X/36/6/064202
|