Probing Lattice Vibrations at SiO2/Si Surface and Interface with Nanometer Resolution

    Show all affliationsShow less
  • Received Date: October 20, 2018
  • Published Date: January 31, 2019
  • Recent advances in monochromatic aberration corrected electron microscopy make it possible to detect the lattice vibrations with both high-energy resolution and high spatial resolution. Here, we use sub-10 meV electron energy loss spectroscopy to investigate the local vibrational properties of the SiO2/Si surface and interface. The energy of the surface mode is thickness dependent, showing a blue shift as z-thickness (parallel to the fast electron beam) of SiO2 film increases, while the energy of the bulk mode and the interface mode keeps constant. The intensity of the surface mode is well-described by a Bessel function of the second kind. The mechanism of the observed spatially dependent vibrational behavior is discussed and compared with dielectric response theory analysis. Our nanometer scale measurements provide useful information on the bonding conditions at the surface and interface.
  • Article Text

  • [1]
    Ashcroft N W 1976 Solid State Physics New York: Brooks Cole

    Google Scholar

    [2]
    Houchmandzadeh B, Lajzerowicz J and Salje E 1992 J. Phys.: Condens. Matter 4 9779 doi: 10.1088/0953-8984/4/49/006

    CrossRef Google Scholar

    [3]
    Xia F N, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photon. 8 899 doi: 10.1038/nphoton.2014.271

    CrossRef Google Scholar

    [4]
    Maradudin A A and Oitmaa J 1969 Solid State Commun. 7 1143 doi: 10.1016/0038-10986990503-1

    CrossRef Google Scholar

    [5]
    Ibach H and Mills D L 1982 Electron Energy Loss Spectroscopy and Surface Vibrations New York: Academic Press

    Google Scholar

    [6]
    Zhang S Y et al. 2018 Phys. Rev. B 97 035408 doi: 10.1103/PhysRevB.97.035408

    CrossRef Google Scholar

    [7]
    Griffiths P R 1975 Chemical Infrared Fourier Transform Spectroscopy New York: Wiley

    Google Scholar

    [8]
    Stuart B 2005 Kirk-Othmer Encyclopedia of Chemical Technology New York: Wiley

    Google Scholar

    [9]
    Efremov E V, Ariese F and Gooijer C 2008 Anal. Chim. Acta 606 119 doi: 10.1016/j.aca.2007.11.006

    CrossRef Google Scholar

    [10]
    Steidtner J and Pettinger B 2008 Phys. Rev. Lett. 100 236101 doi: 10.1103/PhysRevLett.100.236101

    CrossRef Google Scholar

    [11]
    Krivanek O L et al. 2014 Nature 514 209 doi: 10.1038/nature13870

    CrossRef Google Scholar

    [12]
    Lagos M J, Trügler A, Hohenester U and Batson P E 2017 Nature 543 529 doi: 10.1038/nature21699

    CrossRef Google Scholar

    [13]
    Crozier P A, Aoki T and Liu Q 2016 Ultramicroscopy 169 30 doi: 10.1016/j.ultramic.2016.06.008

    CrossRef Google Scholar

    [14]
    Govyadinov A A et al. 2017 Nat. Commun. 8 95 doi: 10.1038/s41467-017-00056-y

    CrossRef Google Scholar

    [15]
    Hachtel J A, Lupini A R and Idrobo J C 2018 Sci. Rep. 8 5637 doi: 10.1038/s41598-018-23805-5

    CrossRef Google Scholar

    [16]
    Hudak B M et al. 2017 Nat. Commun. 8 15316 doi: 10.1038/ncomms15316

    CrossRef Google Scholar

    [17]
    Idrobo J C et al. 2018 Phys. Rev. Lett. 120 095901 doi: 10.1103/PhysRevLett.120.095901

    CrossRef Google Scholar

    [18]
    Lagos M J and Batson P E 2018 Nano Lett. 18 4556 doi: 10.1021/acs.nanolett.8b01791

    CrossRef Google Scholar

    [19]
    Dwyer C et al. 2016 Phys. Rev. Lett. 117 256101 doi: 10.1103/PhysRevLett.117.256101

    CrossRef Google Scholar

    [20]
    Hage F S et al. 2018 Sci. Adv. 4 eaar7495 doi: 10.1126/sciadv.aar7495

    CrossRef Google Scholar

    [21]
    Rez P et al. 2016 Nat. Commun. 7 10945 doi: 10.1038/ncomms10945

    CrossRef Google Scholar

    [22]
    Nicollian E H 1977 J. Vac. Sci. Technol. 14 1112 doi: 10.1116/1.569343

    CrossRef Google Scholar

    [23]
    Kirton M J et al. 1989 Semicond. Sci. Technol. 4 1116 doi: 10.1088/0268-1242/4/12/013

    CrossRef Google Scholar

    [24]
    Tu Y H and Tersoff J 2000 Phys. Rev. Lett. 84 4393 doi: 10.1103/PhysRevLett.84.4393

    CrossRef Google Scholar

    [25]
    Kröger E 1968 Z. Phys. A: Hadrons Nucl. 216 115 doi: 10.1007/BF01390952

    CrossRef Google Scholar

    [26]
    Moreau P, Brun N, Walsh C A, Colliex C and Howie A 1997 Phys. Rev. B 56 6774 doi: 10.1103/PhysRevB.56.6774

    CrossRef Google Scholar

    [27]
    Hohenester U and Trügler A 2012 Comput. Phys. Commun. 183 370 doi: 10.1016/j.cpc.2011.09.009

    CrossRef Google Scholar

    [28]
    Bates J B, Hendricks R W and Shaffer L B 1974 J. Chem. Phys. 61 4163 doi: 10.1063/1.1681714

    CrossRef Google Scholar

    [29]
    Innocenzi P 2003 J. Non-Cryst. Solids 316 309 doi: 10.1016/S0022-30930201637-X

    CrossRef Google Scholar

    [30]
    Montero I, Galán L, Najmi O and Albella J M 1994 Phys. Rev. B 50 4881 doi: 10.1103/PhysRevB.50.4881

    CrossRef Google Scholar

    [31]
    Lagos M J et al. 2018 Microscopy 67 i3 doi: 10.1093/jmicro/dfx130

    CrossRef Google Scholar

    [32]
    Innocenzi P, Falcaro P, Grosso D and Babonneau F 2003 J. Phys. Chem. B 107 4711 doi: 10.1021/jp026609z

    CrossRef Google Scholar

    [33]
    Howie A 1983 Ultramicroscopy 11 141 doi: 10.1016/0304-39918390229-2

    CrossRef Google Scholar

    [34]
    Liu B Y et al. 2018 J. Chin. Electron. Microsc. Soc. 5 474 in Chinese doi: 10.3969/j.issn.1000-6281.2018.05.012

    CrossRef Google Scholar

    [35]
    Venkatraman K, Rez P, March K and Crozier P A 2018 Microscopy 67 i14 doi: 10.1093/jmicro/dfy003

    CrossRef Google Scholar

    [36]
    Garcia-Molina R, Gras-Marti A, Howie A and Ritchie R H 1985 J. Phys. C 18 5335 doi: 10.1088/0022-3719/18/27/019

    CrossRef Google Scholar

  • Related Articles

    [1]HOU Hong-Sheng. Charged Top-Pion Production at e+e- and γγ Colliders  [J]. Chin. Phys. Lett., 2010, 27(8): 081201. doi: 10.1088/0256-307X/27/8/081201
    [2]LI Jiang, LIAO Xiao-Tao, YANG Ming, YANG Hong-Xun, XU Min, ZHANG Bing-Xin, SHEN Xiao-Yan, YANG Yong-Xu. Determination of J/φ Event Number via J/φ→μ+μ- and J/φ→ e+e- at BESIII [J]. Chin. Phys. Lett., 2010, 27(4): 041301. doi: 10.1088/0256-307X/27/4/041301
    [3]HU Xiao-Ying, ZHOU Ya-Jun. Effect of Polarization in (e,2e) Ionization of Argon [J]. Chin. Phys. Lett., 2004, 21(12): 2403-2405.
    [4]PANG Wen-ning, ZHANG Wen-xin, GAO Nai-fei, SHANG Ren-cheng, DENG Jing-kang, CHEN Xue-jun. Valence Shell Ionization Spectra of Propane by (e, 2e) Spectroscopy [J]. Chin. Phys. Lett., 1998, 15(9): 648-650.
    [5]YANG Jian-jun, LI Guang-lie, HUANG Tao. A Study of the Off-Shell Calculation in the Quark-Gluon Vertex [J]. Chin. Phys. Lett., 1997, 14(10): 724-727.
    [6]LIU Ximing, Tian Lili. Pseudoscalar Meson Production of γ Resonance in e+e- Annihilation [J]. Chin. Phys. Lett., 1995, 12(11): 645-648.
    [7]WANG Zhengzhi. e+e- → JETS FOR MULTIPLICITY DISTRIBUTION [J]. Chin. Phys. Lett., 1990, 7(3): 113-116.
    [8]CHEN E-sheng, WU Qian. RATIO OF CHARMED BARYON TO MESON IN e+e- ANNIHILATION [J]. Chin. Phys. Lett., 1990, 7(3): 109-112.
    [9]DU Dongsheng, WU Dandi, Isard Dunietz. A LARGE CP VIOLATION EFFECT IN THE Bs- Bs SYSTEM [J]. Chin. Phys. Lett., 1987, 4(8): 377-380.
    [10]DU Dongsheng, WU Dandi. THE SIGNATURE OF D°-D°MIXING AT AN e+e- COLLIDER IS CLEAN [J]. Chin. Phys. Lett., 1986, 3(9): 389-392.

Catalog

    Article views (501) PDF downloads (600) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return