Express Letter
The Unconventional Influence of a Nearby Molecule onto Transport of Single C Molecule Transistor
-
Abstract
We study the transport property of single C molecular transistors with special focus on the situation that other molecules are in vicinity. The devices are prepared using electromigration and thermal deposition techniques. Pure single C molecule transistors show typical coulomb blockade behavior at low temperature. When we increase the coverage of molecules slightly by extending the deposition time, the transport spectrum of devices displays a switching behavior in the general coulomb blockade pattern. We attribute this unconventional phenomenon to the influence from a nearby C molecule. By analyzing this transport behavior quantitatively based on the parallel-double-quantum-dot model, the interaction from the nearby molecule is proved to be of capacity and tunneling coupling. Thermal stimulation is also applied to the device to investigate the effect of local charging environment variation on intermolecular interaction. -
-
References
[1] Aradhya S V and Venkataraman L 2013 Nat. Nanotechnol. 8 399 doi: 10.1038/nnano.2013.91}[2] Song H, Reed M A and Lee T 2011 Adv. Mater. 23 1583 doi: 10.1002/adma.201004291}[3] Tao N J 2006 Nat. Nanotechnol. 1 173 doi: 10.1038/nnano.2006.130}[4] D Xiang et al. 2016 Chem. Rev. 116 4318 doi: 10.1021/acs.chemrev.5b00680}[5] Perrin M L, Burzuri E and H S van der Zant 2015 Chem. Soc. Rev. 44 902 doi: 10.1039/C4CS00231H}[6] Scott G D and Natelson D 2010 ACS Nano 4 3560 doi: 10.1021/nn100793s}[7] E A Osorio et al. 2008 J. Physics. Condens. Matter: An Inst. Phys. J. 20 374121 doi: 10.1088/0953-8984/20/37/374121}[8] W J Liang et al. 2002 Nature 417 725 doi: 10.1038/nature00790}[9] S Kubatkin et al. 2003 Nature 425 698 doi: 10.1038/nature02010}[10] C W Marquardt et al. 2010 Nat. Nanotechnol. 5 863 doi: 10.1038/nnano.2010.230}[11] Y Kim et al. 2014 Nat. Nanotechnol. 9 881 doi: 10.1038/nnano.2014.209}[12] S Thiele et al. 2014 Science 344 1135 doi: 10.1126/science.1249802}[13] J Martínez-Blanco et al. 2015 Nat. Phys. 11 640 doi: 10.1038/nphys3385}[14] S Wu et al. 2008 Nat. Nanotechnol. 3 569 doi: 10.1038/nnano.2008.237}[15] H Park et al. 2000 Nature 407 57 doi: 10.1038/35024031}[16] Yu L H and Natelson D 2004 Nano Lett. 4 79 doi: 10.1021/nl034893f}[17] C B Winkelmann et al. 2009 Nat. Phys. 5 876 doi: 10.1038/nphys1433}[18] H Park et al. 1999 Appl. Phys. Lett. 75 301 doi: 10.1063/1.124354}[19] F Prins et al. 2011 Nano Lett. 11 4607 doi: 10.1021/nl202065x}[20] L H Yu et al. 2004 Phys. Rev. Lett. 93 266802 doi: 10.1103/PhysRevLett.93.266802}[21] Galperin M, Ratner M A and Nitzan A 2007 J. Phys.: Condens. Matter 19 103201 doi: 10.1088/0953-8984/19/10/103201}[22] E A Osorio et al. 2007 Adv. Mater. 19 281 doi: 10.1002/adma.200601876}[23] N P de Leon et al. 2008 Nano Lett. 8 2963 doi: 10.1021/nl8018824}[24] Petit P et al. 2014 Phys. Rev. B 89 115432 doi: 10.1103/PhysRevB.89.115432}[25] F Hofmann et al. 1995 Phys. Rev. B 51 13872 doi: 10.1103/PhysRevB.51.13872}[26] Abulizi G, Baumgartner A and Schönenberger C 2016 Phys. Status Solidi B 253 2428 doi: 10.1002/pssb.201600293}[27] Beenakker C W J 1991 Phys. Rev. B 44 1646 doi: 10.1103/PhysRevB.44.1646}[28] Mahapatra S, Buch H and Simmons M Y 2011 Nano Lett. 11 4376 doi: 10.1021/nl2025079} -
Related Articles
[1] BI Zhi-Wei, HAO Yue, FENG Qian, GAO Zhi-Yuan, ZHANG Jin-Cheng, MAO Wei, ZHANG Kai, MA Xiao-Hua, LIU Hong-Xia, YANG Lin-An, MEI Nan, CHANG Yong-Ming. AlGaN/GaN Metal-Insulator-Semiconductor High Electron-Mobility Transistor Using a NbAlO/Al2O3 Laminated Dielectric by Atomic Layer Deposition [J]. Chin. Phys. Lett., 2012, 29(2): 028501. doi: 10.1088/0256-307X/29/2/028501 [2] MAO Wei, ZHANG Jin-Cheng, XUE Jun-Shuai, HAO Yao, MA Xiao-Hua, WANG Chong, LIU Hong-Xia, XU Sheng-Rui, YANG Lin-An, BI Zhi-Wei, LIANG Xiao-Zhen, ZHANG Jin-Feng, KUANG Xian-Wei. Fabrication and Characteristics of AlInN/AlN/GaN MOS-HEMTs with Ultra-Thin Atomic Layer Deposited Al2O3 Gate Dielectric [J]. Chin. Phys. Lett., 2010, 27(12): 128501. doi: 10.1088/0256-307X/27/12/128501 [3] SHI Yu, SUN Qing-Qing, DONG Lin, LIU Han, DING Shi-Jin, ZHANG Wei. Atomic Layer Deposition of Al2O3 on H-Passivated GeSi: Initial Surface Reaction Pathways with H/GeSi(100)-2×1 [J]. Chin. Phys. Lett., 2009, 26(5): 053101. doi: 10.1088/0256-307X/26/5/053101 [4] SHI Yu, SUN Qing-Qing, DONG Lin, LIU Han, DING Shi-Jin, ZHANG Wei. Improvement of Atomic-Layer-Deposited Al2O3/GaAs Interface Property by Sulfuration and NH3 Thermal Nitridation [J]. Chin. Phys. Lett., 2008, 25(11): 3954-3956. [5] YUE Yuan-Zheng, HAO Yue, FENG Qian, ZHANG Jin-Cheng, MA Xiao-Hua, NI Jin-Yu. GaN MOS-HEMT Using Ultra-Thin Al2O3 Dielectric Grown by Atomic Layer Deposition [J]. Chin. Phys. Lett., 2007, 24(8): 2419-2422. [6] SHI Li-Bin, ZHENG Yan, REN Jun-Yuan, LI Ming-Biao, ZHANG Feng-Yun, LI Bo-Xin, DONG Hai-Kuan. Microwave Response of MgB2/Al2O3 Superconducting Thin Films by Microstrip Resonator Technique [J]. Chin. Phys. Lett., 2007, 24(6): 1713-1716. [7] ZHOU Sheng-Qiang, WU Ming-Fang, YAO Shu-De, WANG Li, JIANG Feng-Yi. Structural, Morphology and Optical Properties of Epitaxial ZnO Films Grown on Al2O3 by MOCVD [J]. Chin. Phys. Lett., 2006, 23(4): 1023-1025. [8] XU Min, LU Hong-Liang, DING Shi-Jin, SUN Liang, ZHANG Wei, WANG Li-Kang. Effect of Trimethyl Aluminium Surface Pretreatment on Atomic Layer Deposition Al2O3 Ultra-Thin Film on Si Substrate [J]. Chin. Phys. Lett., 2005, 22(9): 2418-2421. [9] ZHAO Bai-Jun, YANG Hong-Jun, DU Guo-Tong, MIAO Guo-Qing, YANG Tian-Peng, ZHANG Yuan-Tao, GAO Zhong-Min, WANG Jin-Zhong, FANG Xiu-Jun, LIU Da-Li, LI Wan-Cheng, MA Yan, YANG Xiao-Tian, LIU Bo-Yang. Comparative Study of Properties of ZnO/GaN/Al2O3 and ZnO/Al2O3 Films Grown by Low-Pressure Metal Organic Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2003, 20(11): 2045-2048. [10] LI Cheng-Ren, SONG Chang-Lie, LI Shu-Feng, RAO Wen-Xiong. Deposition of Er:Al2O3 Films and Photoluminescence Characteristics [J]. Chin. Phys. Lett., 2003, 20(9): 1613-1615. -
Supplements
Other Related Supplements
-
Cover image
156KB
-