Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration
-
Abstract
Using the single-mode approximation, we study entanglement measures including two independent quantities; i.e., negativity and von Neumann entropy for a tripartite generalized Greenberger–Horne–Zeilinger (GHZ) state in noninertial frames. Based on the calculated negativity, we study the whole entanglement measures named as the algebraic average -tangle and geometric average -tangle. We find that the difference between them is very small or disappears with the increase of the number of accelerated qubits. The entanglement properties are discussed from one accelerated observer and others remaining stationary to all three accelerated observers. The results show that there will always exist entanglement, even if acceleration arrives to infinity. The degree of entanglement for all 1–1 tangles are always equal to zero, but 1–2 tangles always decrease with the acceleration parameter . We notice that the von Neumann entropy increases with the number of the accelerated observers and () first increases and then decreases with the acceleration parameter . This implies that the subsystem is first more disorder and then the disorder will be reduced as the acceleration parameter increases. Moreover, it is found that the von Neumann entropies , and always decrease with the controllable angle , while the entropies of the bipartite subsystems (two accelerated qubits), (one accelerated qubit) and (without accelerated qubit) first increase with the angle and then decrease with it. -
-
References
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 doi: 10.1103/PhysRev.47.777}[2] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555 doi: 10.1017/S0305004100013554}[3] Schrödinger E 1936 Math. Proc. Cambridge Philos. Soc. 32 446 doi: 10.1017/S0305004100019137}[4] Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics Cambridge: Cambridge University Press[5] Werner R F 1989 Phys. Rev. A 40 4277 doi: 10.1103/PhysRevA.40.4277}[6] Gühne O and Tóth G 2009 Phys. Rep. 474 1 doi: 10.1016/j.physrep.2009.02.004}[7] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 doi: 10.1103/RevModPhys.81.865}[8] Peres A 1996 Phys. Rev. Lett. 76 1413 doi: 10.1103/PhysRevLett.76.1413}[9] Zyczkowski K and Horodecki P 1998 Phys. Rev. A 58 883 doi: 10.1103/PhysRevA.58.883}[10] Li Y, Liu C, Wang Q, Zhang H and Hu L 2016 Optik 127 9788 doi: 10.1016/j.ijleo.2016.07.069}[11] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275 doi: 10.1103/PhysRevLett.78.2275}[12] Vedral V, Plenio M B, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4452 doi: 10.1103/PhysRevA.56.4452}[13] Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619 doi: 10.1103/PhysRevA.57.1619}[14] Murao M, Plenio M B, Popescu S, Vedral V and Knight P L 1998 Phys. Rev. A 57 R4075 doi: 10.1103/PhysRevA.57.R4075}[15] Dür W, Cirac J I and Tarrach R 1999 Phys. Rev. Lett. 83 3562 doi: 10.1103/PhysRevLett.83.3562}[16] Bennett C H, DiVicenzo D, Mor T, Shor P, Smolin J and Terhal B 1999 Phys. Rev. Lett. 82 5385 doi: 10.1103/PhysRevLett.82.5385}[17] Modi K, Brodutch A, Cable H, Patrek T and Vedral V 2012 Rev. Mod. Phys. 84 1655 doi: 10.1103/RevModPhys.84.1655}[18] Alsing P M, Fuentes-Schuller I, Mann R B and Tessier T E 2006 Phys. Rev. A 74 032326 doi: 10.1103/PhysRevA.74.032326}[19] Montero M, León J and Martínez M 2011 Phys. Rev. A 84 042320 doi: 10.1103/PhysRevA.84.042320}[20] Shamirzaie M, Esfahani B N and Soltani M 2012 Int. J. Theor. Phys. 51 787 doi: 10.1007/s10773-011-0958-9}[21] Metwally N 2013 Int. J. Mod. Phys. B 27 1350155 doi: 10.1142/S0217979213501555}[22] Torres-Arenas A J, López-Zúñiga E O, Saldaña-Herrera J A, Dong Q, Sun G H and Dong S H 2019 Chin. Phys. B 28 070301 doi: 10.1088/1674-1056/28/7/070301}[23] Dong Q, Sanchez M A A, Yáñez I L, Sun G H and Dong S H 2019 Phys. Scr. 94 105101 doi: 10.1088/1402-4896/ab2111}[24] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 doi: 10.1103/PhysRevLett.70.1895}[25] Bennett C H, Bernstein E, Brassard G and Vazirani U 1997 SIAM J. Comput. 26 1411 doi: 10.1137/S0097539796300921}[26] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information Berlin: Springer-Verlag[27] Smith A and Mann R B 2012 Phys. Rev. A 86 012306 doi: 10.1103/PhysRevA.86.012306}[28] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314 doi: 10.1103/PhysRevA.62.062314}[29] Wang J and Jiang J 2011 Phys. Rev. A 83 022314 doi: 10.1103/PhysRevA.83.022314}[30] Qiang W C, Sun G H, Camacho-Nieto O and Dong S H 2017 arXiv:1711.04230v1[31] Wang J and Jiang J 2018 Phys. Rev. A 97 029902 doi: 10.1103/PhysRevA.97.029902}[32] Hwang M R, Park D and Jung E 2011 Phys. Rev. A 83 012111 doi: 10.1103/PhysRevA.83.012111}[33] Yao Y, Xiao X, Ge L, Wang X G and Sun C P 2014 Phys. Rev. A 89 042336 doi: 10.1103/PhysRevA.89.042336}[34] Khan S 2014 Ann. Phys. 348 270 doi: 10.1016/j.aop.2014.05.022}[35] Khan S, Khan N A and Khan M K 2014 Commun. Theor. Phys. 61 281 doi: 10.1088/0253-6102/61/3/02}[36] Bruschi D E, Dragan A, Fuentes I and Louko J 2012 Phys. Rev. D 86 025026 doi: 10.1103/PhysRevD.86.025026}[37] Martín-Martínez E and Fuentes I 2011 Phys. Rev. A 83 052306 doi: 10.1103/PhysRevA.83.052306}[38] Mehri-Dehnavi H, Mirza B, Mohammadzadeh H and Rahimi R 2011 Ann. Phys. 326 1320 doi: 10.1016/j.aop.2011.02.001}[39] Park D K 2016 Quantum Inf. Process. 15 3189 doi: 10.1007/s11128-016-1331-y}[40] Torres-Arenas A J, Dong Q, Sun G H, Qiang W C and Dong S H 2019 Phys. Lett. B 789 93 doi: 10.1016/j.physletb.2018.12.010}[41] Qiang W C, Dong Q, Mercado Sanchez M A, Sun G H and Dong S H 2019 Quantum Inf. Process. 18 314 doi: 10.1007/s11128-019-2421-4}[42] Dong Q, Torres-Arenas A J, Sun G H, Qiang W C and Dong S H 2019 Front. Phys. 14 21603 doi: 10.1007/s11467-018-0876-x}[43] Sharma K K and Pandey S N 2016 Quantum Inf. Process. 15 4995 doi: 10.1007/s11128-016-1443-4}[44] Park D 2012 J. Phys. A 45 415308 doi: 10.1088/1751-8113/45/41/415308}[45] Eltschka C, Osterloh A, Siewert J and Uhlmann A 2008 New J. Phys. 10 043014 doi: 10.1088/1367-2630/10/4/043014}[46] Zhao J L, Zhang Y D and Yang M 2018 Acta Phys. Sin. 67 140302 in Chinese doi: 10.7498/aps.67.20180040}[47] Socolovsky M 2013 arXiv:1304.2833v2[48] Nakahara M, Wan Y and Sasaki Y 2013 Diversities in Quantum Computation and Quantum Information Singapore: World Scientific[49] Takagi S 1986 Prog. Theor. Phys. Suppl. 88 1 doi: 10.1143/PTPS.88.1}[50] Martín-Martínez E, Garay L J and León J 2010 Phys. Rev. D 82 064006 doi: 10.1103/PhysRevD.82.064006}[51] Williams C P 2010 Explorations in Quantum Computing New York: Springer[52] Oliveira D S and Ramos R V 2010 Quantum Inf. Process. 9 497 doi: 10.1007/s11128-009-0154-5}[53] Sabín C and García-Alcaine G 2008 Eur. Phys. J. D 48 435 doi: 10.1140/epjd/e2008-00112-5}[54] von Neumann J 1996 Mathematical Foundations of Quantum Mechanics New Jersey: Princeton University Press