Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration

Funds: Supported by the CONACYT of Mexico under Grant No 288856-CB-2016, and the 20190234-SIP-IPN of Mexico.
  • Received Date: June 19, 2019
  • Published Date: September 30, 2019
  • Using the single-mode approximation, we study entanglement measures including two independent quantities; i.e., negativity and von Neumann entropy for a tripartite generalized Greenberger–Horne–Zeilinger (GHZ) state in noninertial frames. Based on the calculated negativity, we study the whole entanglement measures named as the algebraic average π3-tangle and geometric average Π3-tangle. We find that the difference between them is very small or disappears with the increase of the number of accelerated qubits. The entanglement properties are discussed from one accelerated observer and others remaining stationary to all three accelerated observers. The results show that there will always exist entanglement, even if acceleration r arrives to infinity. The degree of entanglement for all 1–1 tangles are always equal to zero, but 1–2 tangles always decrease with the acceleration parameter r. We notice that the von Neumann entropy increases with the number of the accelerated observers and SκIζI (κ,ζ(A,B,C)) first increases and then decreases with the acceleration parameter r. This implies that the subsystem ρκIζI is first more disorder and then the disorder will be reduced as the acceleration parameter r increases. Moreover, it is found that the von Neumann entropies SABCI, SABICI and SAIBICI always decrease with the controllable angle θ, while the entropies of the bipartite subsystems S22non (two accelerated qubits), S21non (one accelerated qubit) and S20non (without accelerated qubit) first increase with the angle θ and then decrease with it.
  • Article Text

  • [1]
    Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 doi: 10.1103/PhysRev.47.777}

    CrossRef Google Scholar

    [2]
    Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555 doi: 10.1017/S0305004100013554}

    CrossRef Google Scholar

    [3]
    Schrödinger E 1936 Math. Proc. Cambridge Philos. Soc. 32 446 doi: 10.1017/S0305004100019137}

    CrossRef Google Scholar

    [4]
    Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics Cambridge: Cambridge University Press

    Google Scholar

    [5]
    Werner R F 1989 Phys. Rev. A 40 4277 doi: 10.1103/PhysRevA.40.4277}

    CrossRef Google Scholar

    [6]
    Gühne O and Tóth G 2009 Phys. Rep. 474 1 doi: 10.1016/j.physrep.2009.02.004}

    CrossRef Google Scholar

    [7]
    Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 doi: 10.1103/RevModPhys.81.865}

    CrossRef Google Scholar

    [8]
    Peres A 1996 Phys. Rev. Lett. 76 1413 doi: 10.1103/PhysRevLett.76.1413}

    CrossRef Google Scholar

    [9]
    Zyczkowski K and Horodecki P 1998 Phys. Rev. A 58 883 doi: 10.1103/PhysRevA.58.883}

    CrossRef Google Scholar

    [10]
    Li Y, Liu C, Wang Q, Zhang H and Hu L 2016 Optik 127 9788 doi: 10.1016/j.ijleo.2016.07.069}

    CrossRef Google Scholar

    [11]
    Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275 doi: 10.1103/PhysRevLett.78.2275}

    CrossRef Google Scholar

    [12]
    Vedral V, Plenio M B, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4452 doi: 10.1103/PhysRevA.56.4452}

    CrossRef Google Scholar

    [13]
    Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619 doi: 10.1103/PhysRevA.57.1619}

    CrossRef Google Scholar

    [14]
    Murao M, Plenio M B, Popescu S, Vedral V and Knight P L 1998 Phys. Rev. A 57 R4075 doi: 10.1103/PhysRevA.57.R4075}

    CrossRef Google Scholar

    [15]
    Dür W, Cirac J I and Tarrach R 1999 Phys. Rev. Lett. 83 3562 doi: 10.1103/PhysRevLett.83.3562}

    CrossRef Google Scholar

    [16]
    Bennett C H, DiVicenzo D, Mor T, Shor P, Smolin J and Terhal B 1999 Phys. Rev. Lett. 82 5385 doi: 10.1103/PhysRevLett.82.5385}

    CrossRef Google Scholar

    [17]
    Modi K, Brodutch A, Cable H, Patrek T and Vedral V 2012 Rev. Mod. Phys. 84 1655 doi: 10.1103/RevModPhys.84.1655}

    CrossRef Google Scholar

    [18]
    Alsing P M, Fuentes-Schuller I, Mann R B and Tessier T E 2006 Phys. Rev. A 74 032326 doi: 10.1103/PhysRevA.74.032326}

    CrossRef Google Scholar

    [19]
    Montero M, León J and Martínez M 2011 Phys. Rev. A 84 042320 doi: 10.1103/PhysRevA.84.042320}

    CrossRef Google Scholar

    [20]
    Shamirzaie M, Esfahani B N and Soltani M 2012 Int. J. Theor. Phys. 51 787 doi: 10.1007/s10773-011-0958-9}

    CrossRef Google Scholar

    [21]
    Metwally N 2013 Int. J. Mod. Phys. B 27 1350155 doi: 10.1142/S0217979213501555}

    CrossRef Google Scholar

    [22]
    Torres-Arenas A J, López-Zúñiga E O, Saldaña-Herrera J A, Dong Q, Sun G H and Dong S H 2019 Chin. Phys. B 28 070301 doi: 10.1088/1674-1056/28/7/070301}

    CrossRef Google Scholar

    [23]
    Dong Q, Sanchez M A A, Yáñez I L, Sun G H and Dong S H 2019 Phys. Scr. 94 105101 doi: 10.1088/1402-4896/ab2111}

    CrossRef Google Scholar

    [24]
    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 doi: 10.1103/PhysRevLett.70.1895}

    CrossRef Google Scholar

    [25]
    Bennett C H, Bernstein E, Brassard G and Vazirani U 1997 SIAM J. Comput. 26 1411 doi: 10.1137/S0097539796300921}

    CrossRef Google Scholar

    [26]
    Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information Berlin: Springer-Verlag

    Google Scholar

    [27]
    Smith A and Mann R B 2012 Phys. Rev. A 86 012306 doi: 10.1103/PhysRevA.86.012306}

    CrossRef Google Scholar

    [28]
    Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314 doi: 10.1103/PhysRevA.62.062314}

    CrossRef Google Scholar

    [29]
    Wang J and Jiang J 2011 Phys. Rev. A 83 022314 doi: 10.1103/PhysRevA.83.022314}

    CrossRef Google Scholar

    [30]
    Qiang W C, Sun G H, Camacho-Nieto O and Dong S H 2017 arXiv:1711.04230v1

    Google Scholar

    [31]
    Wang J and Jiang J 2018 Phys. Rev. A 97 029902 doi: 10.1103/PhysRevA.97.029902}

    CrossRef Google Scholar

    [32]
    Hwang M R, Park D and Jung E 2011 Phys. Rev. A 83 012111 doi: 10.1103/PhysRevA.83.012111}

    CrossRef Google Scholar

    [33]
    Yao Y, Xiao X, Ge L, Wang X G and Sun C P 2014 Phys. Rev. A 89 042336 doi: 10.1103/PhysRevA.89.042336}

    CrossRef Google Scholar

    [34]
    Khan S 2014 Ann. Phys. 348 270 doi: 10.1016/j.aop.2014.05.022}

    CrossRef Google Scholar

    [35]
    Khan S, Khan N A and Khan M K 2014 Commun. Theor. Phys. 61 281 doi: 10.1088/0253-6102/61/3/02}

    CrossRef Google Scholar

    [36]
    Bruschi D E, Dragan A, Fuentes I and Louko J 2012 Phys. Rev. D 86 025026 doi: 10.1103/PhysRevD.86.025026}

    CrossRef Google Scholar

    [37]
    Martín-Martínez E and Fuentes I 2011 Phys. Rev. A 83 052306 doi: 10.1103/PhysRevA.83.052306}

    CrossRef Google Scholar

    [38]
    Mehri-Dehnavi H, Mirza B, Mohammadzadeh H and Rahimi R 2011 Ann. Phys. 326 1320 doi: 10.1016/j.aop.2011.02.001}

    CrossRef Google Scholar

    [39]
    Park D K 2016 Quantum Inf. Process. 15 3189 doi: 10.1007/s11128-016-1331-y}

    CrossRef Google Scholar

    [40]
    Torres-Arenas A J, Dong Q, Sun G H, Qiang W C and Dong S H 2019 Phys. Lett. B 789 93 doi: 10.1016/j.physletb.2018.12.010}

    CrossRef Google Scholar

    [41]
    Qiang W C, Dong Q, Mercado Sanchez M A, Sun G H and Dong S H 2019 Quantum Inf. Process. 18 314 doi: 10.1007/s11128-019-2421-4}

    CrossRef Google Scholar

    [42]
    Dong Q, Torres-Arenas A J, Sun G H, Qiang W C and Dong S H 2019 Front. Phys. 14 21603 doi: 10.1007/s11467-018-0876-x}

    CrossRef Google Scholar

    [43]
    Sharma K K and Pandey S N 2016 Quantum Inf. Process. 15 4995 doi: 10.1007/s11128-016-1443-4}

    CrossRef Google Scholar

    [44]
    Park D 2012 J. Phys. A 45 415308 doi: 10.1088/1751-8113/45/41/415308}

    CrossRef Google Scholar

    [45]
    Eltschka C, Osterloh A, Siewert J and Uhlmann A 2008 New J. Phys. 10 043014 doi: 10.1088/1367-2630/10/4/043014}

    CrossRef Google Scholar

    [46]
    Zhao J L, Zhang Y D and Yang M 2018 Acta Phys. Sin. 67 140302 in Chinese doi: 10.7498/aps.67.20180040}

    CrossRef Google Scholar

    [47]
    Socolovsky M 2013 arXiv:1304.2833v2

    Google Scholar

    [48]
    Nakahara M, Wan Y and Sasaki Y 2013 Diversities in Quantum Computation and Quantum Information Singapore: World Scientific

    Google Scholar

    [49]
    Takagi S 1986 Prog. Theor. Phys. Suppl. 88 1 doi: 10.1143/PTPS.88.1}

    CrossRef Google Scholar

    [50]
    Martín-Martínez E, Garay L J and León J 2010 Phys. Rev. D 82 064006 doi: 10.1103/PhysRevD.82.064006}

    CrossRef Google Scholar

    [51]
    Williams C P 2010 Explorations in Quantum Computing New York: Springer

    Google Scholar

    [52]
    Oliveira D S and Ramos R V 2010 Quantum Inf. Process. 9 497 doi: 10.1007/s11128-009-0154-5}

    CrossRef Google Scholar

    [53]
    Sabín C and García-Alcaine G 2008 Eur. Phys. J. D 48 435 doi: 10.1140/epjd/e2008-00112-5}

    CrossRef Google Scholar

    [54]
    von Neumann J 1996 Mathematical Foundations of Quantum Mechanics New Jersey: Princeton University Press

    Google Scholar

Catalog

    Article views (434) PDF downloads (603) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return