A Novel Method for PIT Effects Based on Plasmonic Decoupling
-
Abstract
A tunable dual-band stop-band THz spectrum can be realized in a hybrid structure, which consists of metal nanoribbon arrays clad by graphene nanoribbons. Dual-band spectra can be controlled separately by the nanoribbon width w and graphene chemical potential \mu_\rm c. We explain that two local plasmonic modes excited at graphene ribbons belong to different gratings, which uncouple with each other by electro-magnetic shielding of the metal ribbons. Furthermore, plasmonic induced transparent (PIT) effects can also be realized by making the two transmission notches close to each other, with better performance than the PIT system based on plasmonic coupling, such as with a larger extinction radio and a tunable transparency window.
Article Text
-
-
-
About This Article
Cite this article:
Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 017801. DOI: 10.1088/0256-307X/36/1/017801
Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 017801. DOI: 10.1088/0256-307X/36/1/017801
|
Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 017801. DOI: 10.1088/0256-307X/36/1/017801
Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 017801. DOI: 10.1088/0256-307X/36/1/017801
|