Loading [MathJax]/jax/output/SVG/autoload/multiline.js

First-Stokes Wavelengths at 1175.8 and 1177.1nm Generated in a Diode End-Pumped Nd:YVO4/LuVO4 Raman Laser

Funds: Supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No LY19F050012, the National Natural Science Foundation of China under Grant No 61505147, the Laboratory Open Project of Wenzhou University under Grant No 18SK31, and the Research Funds of College Student Innovation of Zhejiang Province under Grant No 2018R42901.
  • Received Date: November 18, 2018
  • Published Date: December 31, 2018
  • A diode end-pumped acousto-optic Q-switched Nd:YVO4/LuVO4 Raman laser is demonstrated. Both YVO4 and LuVO4 can work as Raman gain, and slightly different active vibration modes of both crystals can result in different first-Stokes wavelengths. The output characteristic as the Raman competition between YVO4 and LuVO4 crystals for the laser systems with both shared cavity and coupled cavity is experimentally investigated. For the shared cavity, simultaneous Raman conversion in both YVO4 and LuVO4 crystals is achieved with dual-wavelength emission at 1175.8 and 1177.1 nm. The maximum output power of 1.03 W and the conversion efficiency of 10.3% are obtained. The 0.84 W single first Stokes wavelength at 1177.1 nm with LuVO4 Raman conversion is achieved with the coupled cavity. The results show that the coupled cavity with short Raman cavity can obtain a narrow pulse width. The separated laser crystal and Raman gain media with different vanadates in shared cavity have advantages in achieving dual-wavelength lasers with small frequency intervals.
  • Article Text

  • [1]
    Piper J A and Pask H M 2007 IEEE J. Sel. Top. Quantum Electron. 13 692 doi: 10.1109/JSTQE.2007.897175

    CrossRef Google Scholar

    [2]
    Hisamuddin N, Zakaria U N, Zulkifli M Z, Latif A A, Ahmad H and Harun S W 2016 Chin. Phys. Lett. 33 074208 doi: 10.1088/0256-307X/33/7/074208

    CrossRef Google Scholar

    [3]
    Li F, Zhao W Q, Qiao X, Xia C Q, Wang L C, Fan H B and Shen M Y 2016 Chin. Phys. B 25 114207 doi: 10.1088/1674-1056/25/11/114207

    CrossRef Google Scholar

    [4]
    Su F F, Zhang X Y, Wang Q P, Chang J, Jia P, Li S T, Zhang X L and Cong Z H 2007 Chin. Phys. B 16 3370 doi: 10.1088/1009-1963/16/11/037

    CrossRef Google Scholar

    [5]
    Men S J, Liu Z J, Cong Z H, Liu Y, Xia J B, Zhang S S, Cheng W Y, Li Y F, Tu C Y and Zhang X Y 1988 Opt. Lett. 13 530 doi: 10.1364/OL.13.000530

    CrossRef Google Scholar

    [6]
    Duan Y M, Zhu H Y, Zhang Y J, Zhang G, Zhang J, Tang D Y and Kaminskii A A 2016 Sci. Rep. 6 33852 doi: 10.1038/srep33852

    CrossRef Google Scholar

    [7]
    Frank M, Smetanin S N, Jelínek M, Vyhlídal D, Ivleva L I, Zverev P G and Kubeček V 2018 Opt. Lett. 43 2527 doi: 10.1364/OL.43.002527

    CrossRef Google Scholar

    [8]
    Liu Y, Liu Z J, Cong Z H, Men S J, Xia J B, Rao H and Zhang S S 2015 Chin. Phys. Lett. 32 124201 doi: 10.1088/0256-307X/32/12/124201

    CrossRef Google Scholar

    [9]
    Kaminskii A A, Ueda K, Eichler H J, Kuwano Y, Kouta H, Bagaev S N, Chyba T H, Barnes J C, Gad G M A, Murai T and Lu J 2001 Opt. Commun. 194 201 doi: 10.1016/S0030-40180101274-3

    CrossRef Google Scholar

    [10]
    Chen Y F 2004 Opt. Lett. 29 1915 doi: 10.1364/OL.29.001915

    CrossRef Google Scholar

    [11]
    Zhu H Y, Guo J H, Ruan X K, Xu C W, Duan Y M, Zhang Y J and Tang D Y 2017 IEEE Photon. J. 9 1500807 doi: 10.1109/JPHOT.2017.2663663

    CrossRef Google Scholar

    [12]
    Lee C Y, Chang C C, Cho C Y, Tuan P H and Chen Y F 2015 IEEE J. Sel. Top. Quantum Electron. 21 1600305 doi: 10.1109/JSTQE.2014.2324754

    CrossRef Google Scholar

    [13]
    Lee A J, Lin J and Pask H M 2010 Opt. Lett. 35 3000 doi: 10.1364/OL.35.003000

    CrossRef Google Scholar

    [14]
    Zhu H Y, Guo J H, Duan Y M, Zhang J, Zhang Y C, Xu C W, Wang H Y and Fan D Y 2018 Opt. Lett. 43 345 doi: 10.1364/OL.43.000345

    CrossRef Google Scholar

    [15]
    Zhang X, Zhang Y C, Li J, Li R J, Song Q K, Zhang J L and Fan L 2017 Acta Phys. Sin. 66 194203 in Chinese doi: 10.7498/aps.66.194203

    CrossRef Google Scholar

    [16]
    Zhang Y J et al. 2011 Acta Phys. Sin. 60 094209 in Chinese

    Google Scholar

    [17]
    Kaminskii A A, Rhee H, Eichler H J, Ueda K, Oka K and Shibata H 2008 Appl. Phys. B 93 865 doi: 10.1007/s00340-008-3234-9

    CrossRef Google Scholar

    [18]
    Kaminskii A A, Bettinelli M, Dong J, Jaque D and Ueda K 2009 Laser Phys. Lett. 6 374 doi: 10.1002/lapl.200910008

    CrossRef Google Scholar

    [19]
    Rao R, Garg A B, Sakuntala T, Achary S N and Tyagi A K 2009 J. Solid State Chem. 182 1879 doi: 10.1016/j.jssc.2009.05.003

    CrossRef Google Scholar

    [20]
    Xu M, Yu H H, Zhang H J, Xu X G and Wang J Y 2011 J. Rare Earths 29 207 doi: 10.1016/S1002-07211060432-2

    CrossRef Google Scholar

    [21]
    Kaminskii A A, Lux O, Rhee H, Eichler H J, Ueda K, Yoneda H, Shirakawa A, Zhao B, Chen J, Dong J and Zhang J 2012 Laser Phys. Lett. 9 879 doi: 10.7452/lapl.201210103

    CrossRef Google Scholar

    [22]
    Dimitrov D Z, Rafailov P M, Chen Y F, Lee C S, Todorov R and Juang J Y 2017 J. Cryst. Growth 473 34 doi: 10.1016/j.jcrysgro.2017.05.023

    CrossRef Google Scholar

    [23]
    Lü Y F, Zhang X H, Li S T, Xia J, Cheng W B and Xiong Z 2010 Opt. Lett. 35 2964 doi: 10.1364/OL.35.002964

    CrossRef Google Scholar

    [24]
    Tan Y, Fu X H, Zhai P and Zhang X H 2013 Laser Phys. 23 045806 doi: 10.1088/1054-660X/23/4/045806

    CrossRef Google Scholar

    [25]
    Jiang W, Zhu S Q, Chen X Z, Liu Y M, Che Z Q, Yin H, Li Z, Wang S and Chen Y H 2014 Appl. Opt. 53 1328 doi: 10.1364/AO.53.001328

    CrossRef Google Scholar

    [26]
    Duan Y M, Zhu H Y, Wang H Y, Zhang Y J and Chen Z Q 2016 Opt. Express 24 5565 doi: 10.1364/OE.24.005565

    CrossRef Google Scholar

    [27]
    Cai W Y, Duan Y M, Li J T, Yan L F, Mao M J, Zhao B and Zhu H Y 2015 Chin. Phys. Lett. 32 034206 doi: 10.1088/0256-307X/32/3/034206

    CrossRef Google Scholar

    [28]
    Zhang Y C, Fan L, Wei C F, Min X and Ren S X 2018 Acta Phys. Sin. 67 024206 in Chinese doi: 10.7498/aps.67.024206

    CrossRef Google Scholar

    [29]
    Zhang H N, Chen X H, Wang Q P and Li P 2015 Chin. Phys. Lett. 32 014203 doi: 10.1088/0256-307X/32/1/014203

    CrossRef Google Scholar

    [30]
    Su K W, Chang Y T and Chen Y F 2007 Appl. Phys. B 88 47 doi: 10.1007/s00340-007-2648-0

    CrossRef Google Scholar

    [31]
    Zhang Y Y, Huo Y J, He S F and Gong K 2010 Chin. Phys. Lett. 27 124207 doi: 10.1088/0256-307X/27/12/124207

    CrossRef Google Scholar

    [32]
    Chen J B, Zhu H B, Xia W, Guo D M, Hao H and Wang M 2017 Opt. Express 25 560 doi: 10.1364/OE.25.000560

    CrossRef Google Scholar

    [33]
    Zhao P, Ragam S, Ding Y J and Zotova I B 2011 Opt. Lett. 36 4818 doi: 10.1364/OL.36.004818

    CrossRef Google Scholar

  • Related Articles

    [1]CUI Li, ZHANG Heng-Li, XU Liu, LI Jing, YAN Ying, DUAN Can, SHA Peng-Fei, XIN Jian-Guo. Laser-Diode End-Pumped Nd:YVO4 Slab Laser under Direct Pumping into the Emitting Level [J]. Chin. Phys. Lett., 2010, 27(11): 114204. doi: 10.1088/0256-307X/27/11/114204
    [2]ZHANG Heng-Li, XU Liu, CUI Li, YAN Ying, LI Jing, SHA Peng-Fei, XIN Jian-Guo. Laser Diode Pumped 1342nm Nd:YVO4 Slab Laser with a Compact Hybrid Resonator [J]. Chin. Phys. Lett., 2010, 27(10): 104212. doi: 10.1088/0256-307X/27/10/104212
    [3]YAN Ying, ZHANG Heng-Li, LIU Yang, XING Ji-Chuan, XIN Jian-Guo. A Laser-Diode End-Pumped Nd:YVO4 Slab Laser at 1342nm [J]. Chin. Phys. Lett., 2009, 26(1): 014201. doi: 10.1088/0256-307X/26/1/014201
    [4]ZHANG Heng-Li, LIU Xiao-Meng, LI Dai-Jun, SHI Peng, Alex Schell, Claus Rüdige Haas, Du Ke-Ming. A Compact 532-nm Source by Frequency Doubling of a Diode Stack End-Pumped Nd:YAG Slab Laser [J]. Chin. Phys. Lett., 2007, 24(10): 2846-2848.
    [5]WANG Bao-Shan, PENG Ji-Ying, MIAO Jie-Guang, LI Yi-Min, HAO Er-Juan, ZHNG Zhe, GAO Lan-Lan, TAN Hui-Ming. Diode End-Pumped Passively Q-Switched Nd3+:GdVO4 Self-Raman Laser at 1176nm [J]. Chin. Phys. Lett., 2007, 24(1): 112-114.
    [6]HAN Ke-Zhen, PAN Shu-Di, FAN Xiu-Wei, HUANG Hai-Tao, HE Jing-Liang. Simulation of Patterns and Qualitative Analysis of Pattern Rotation in an End-Pumped Nd:YVO4 Laser [J]. Chin. Phys. Lett., 2006, 23(11): 2982-2984.
    [7]ZHOU Rui, DING Xin, WEN Wu-Qi, CAI Zhi-Qiang, WANG Peng, YAO Jian-Quan. High-Power Continuous-Wave Diode-End-Pumped Intracavity Frequency Doubled Nd:YVO4 Laser at 671nm with a Compact Three-Element Cavity [J]. Chin. Phys. Lett., 2006, 23(4): 849-851.
    [8]ZHANG Yu-Ping, ZHENG Yi, ZHANG Hui-Yun, YAO Jian-Quan. A Laser-Diode-Pumped 7.36W Continuous-Wave Nd:YVO4 Laser At 1342nm [J]. Chin. Phys. Lett., 2006, 23(2): 363-365.
    [9]ZHANG Heng-Li, ZHANG Huai-Jin, LI Dai-Jun, WANG Ji-Yang, SHI Peng, Haas R\"udiger, LI Hong-Xia, JIANG Min-Hua, DU Keming. Diode Stack End-Pumped Nd:GdVO4 Continuous Wave Slab Laser [J]. Chin. Phys. Lett., 2005, 22(9): 2276-2277.
    [10]XI Wen-Qiang, ZHAO Jing-Yun, ZHANG Kuan-Shou. A High-Power Continuous-Wave Laser-Diode End-Pumped Nd:YVO Laser of Single-Frequency Operation [J]. Chin. Phys. Lett., 2005, 22(5): 1144-1147.

Catalog

    Article views (380) PDF downloads (291) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return