Dynamically Tunable Perfect Absorbers Utilizing Hexagonal Aluminum Nano-Disk Array Cooperated with Vanadium Dioxide
-
Abstract
A tunable perfect absorber composed of hexagonal-arranged aluminum nano-disk array embedded in the vanadium dioxide (VO2) film is proposed. The aim is to achieve the tunability of resonance absorption peak in the visible and near-infrared regimes. Numerical results reveal that the absorption peak achieves a large tunability of 76.6% while VO2 undergoes a structural transition from insulator phase to metallic phase. By optimizing the structural parameters, an average absorption of 95% is achieved from 1242 to 1815 nm at the metallic phase state. In addition, the near unity absorption can be fulfilled in a wide range of incident angle (0∘–60∘) and under all polarization conditions. The method and results presented here would be beneficial for the design of active optoelectronic devices. -
-
References
[1] Cong L Q, Tan S, Yahiaoui R, Yan F, Zhang W and Singh R 2015 Appl. Phys. Lett. 106 031107 doi: 10.1063/1.4906109[2] Montoya J A, Tian Z B, Krishna S and Padilla W J 2017 Opt. Express 25 23343 doi: 10.1364/OE.25.023343[3] Huang H L, Xia H, Guo Z B, Xie D and Li H J 2017 Chin. Phys. Lett. 34 117801 doi: 10.1088/0256-307X/34/11/117801[4] Matsuno Y and Sakurai A 2017 Opt. Mater. Express 7 618 doi: 10.1364/OME.7.000618[5] Zhu S N and Zhang X 2018 Natl. Sci. Rev. 5 131 doi: 10.1093/nsr/nwy026[6] Hess O, Pendry J B, Maier S A, Oulton R F, Hamm J M and Tsakmakidis K L 2012 Nat. Mater. 11 573 doi: 10.1038/nmat3356[7] Le-Van O, Roux X L, Aassime A and Degiron A 2016 Nat. Commun. 7 12017 doi: 10.1038/ncomms12017[8] Nguyen D M, Xu H, Zhang Y and Zhang B 2015 Appl. Phys. Lett. 107 121901 doi: 10.1063/1.4930989[9] Boardman A D, Grimalsky V V, Kivshar Y S, Koshevaya S V, Lapine M, Litchinitser N M, Malnev V N, Noginov M, Rapoport Y G and Shalaev V M 2011 Laser Photon. Rev. 5 287 doi: 10.1002/lpor.201000012[10] Pope S A and Laalej H 2014 Smart Mater. Struct. 23 075020 doi: 10.1088/0964-1726/23/7/075020[11] Hu F G, Xu X, Li P, Xu X L and Wang Y E 2017 Chin. Phys. B 26 074219 doi: 10.1088/1674-1056/26/7/074219[12] Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra1 M D and Basov D N 2009 Science 325 1518 doi: 10.1126/science.1176580[13] Menges F, Dittberner D, Novotny L, Passarello D, Parkin S S P, Spieser M, Riel H and Gotsmann B 2016 Appl. Phys. Lett. 108 171904 doi: 10.1063/1.4948364[14] Savo S, Zhou Y, Castaldi G, Moccia M, Galdi V, Ramanathan S and Sato Y 2015 Phys. Rev. B 91 134105 doi: 10.1103/PhysRevB.91.134105[15] Wang Y, Zhu J, Yang W, Wen T, Pravica M, Liu Z, Hou M, Fei Y, Kang L, Lin Z, Jin C and Zhao Y 2016 Nat. Commun. 7 12214 doi: 10.1038/ncomms12214[16] Wang S, Kang L and Werner D H 2018 Sci. Rep. 8 189 doi: 10.1038/s41598-017-18472-x[17] Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y and Zhang P X 2012 J. Phys. D 45 235106 doi: 10.1088/0022-3727/45/23/235106[18] Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S and Zhang H W 2018 Adv. Opt. Mater. 6 1700620 doi: 10.1002/adom.201700620[19] Verleur H W, Barker A S and Berglund C N 1968 Phys. Rev. 172 788 doi: 10.1103/PhysRev.172.788[20] Savalya P B, Thomas A, Dua R and Dhawan A 2017 Opt. Express 25 23755 doi: 10.1364/OE.25.023755[21] Palik E D 1998 Handbook of Optical Constants of Solids Orlando: Academic Press[22] Ogawa S, Shimatani M, Fukushima S, Okuda S and Matsumoto K 2018 Opt. Express 26 5665 doi: 10.1364/OE.26.005665[23] Ito K, Toshiyoshi H and Iizuka H 2016 Opt. Express 24 12803 doi: 10.1364/OE.24.012803[24] Liang J, Song X, Li J, Lan K and Li P 2017 J. Alloys Compd. 708 999 doi: 10.1016/j.jallcom.2017.03.110[25] Jung L S, Campbell C T, Chinowsky T M, Mar M N and Yee S S 1998 Langmuir 14 5636 doi: 10.1021/la971228b[26] Liu P, Yang B C, Liu G, Wu R S, Zhang C J, Wan F, Li S G, Yang J L, Gao Y L and Zhou C H 2017 Chin. Phys. B 26 058401 doi: 10.1088/1674-1056/26/5/058401[27] Yu Y, Xiao T H and Li Z Y 2018 Chin. Phys. B 27 017301 doi: 10.1088/1674-1056/27/1/017301[28] Zhou P, Zheng G G, Xu L H, Xian F L and Lai M 2018 Opt. Mater. 81 59 doi: 10.1016/j.optmat.2018.05.016[29] Länk N O, Verre R, Johansson P and Käll M 2017 Nano Lett. 17 3054 doi: 10.1021/acs.nanolett.7b00416 -
Related Articles
[1] CAO Li-Juan, LIU Shu-Juan, LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap [J]. Chin. Phys. Lett., 2012, 29(5): 050305. doi: 10.1088/0256-307X/29/5/050305 [2] HUANG Bei-Bing, WAN Shao-Long. Polaron in Bose-Einstein-Condensation System [J]. Chin. Phys. Lett., 2009, 26(8): 080302. doi: 10.1088/0256-307X/26/8/080302 [3] YANG Lu, WANG Xiao-Rui, LI Ke, TAN Xin-Zhou, XIONG Hong-Wei, LU Bao-Long. Low-Energy Collective Excitation of Bose-Einstein Condensates in an Anisotropic Magnetic Trap [J]. Chin. Phys. Lett., 2009, 26(7): 076701. doi: 10.1088/0256-307X/26/7/076701 [4] LI Hong, WANG D. N.. Dark Soliton of a Growing Bose--Einstein Condensate in an External Trap [J]. Chin. Phys. Lett., 2008, 25(11): 3864-3866. [5] ZHANG Ai-Xia, TIAN Shi-Ling, TANG Rong-An, XUE Ju-Kui. Tunnelling Dynamics of Bose--Einstein Condensates in a Five-Well Trap [J]. Chin. Phys. Lett., 2008, 25(10): 3566-3569. [6] CHEN Shuai, ZHOU Xiao-Ji, YANG Fan, XIA Lin, WANG Yi-Qiu, CHEN Xu-Zong. Optimization of the Loading Process of the QUIC Magnetic Trap for the Experiment of Bose--Einstein Condensation [J]. Chin. Phys. Lett., 2004, 21(11): 2227-2230. [7] WANG Yu-Zhu, ZHOU Shu-Yu, LONG Quan, ZHOU Shan-Yu, FU Hai-Xiang. Evidence for a Bose-Einstein Condensate in Dilute Rb Gas by Absorption Image in a Quadrupole and Ioffe Configuration Trap [J]. Chin. Phys. Lett., 2003, 20(6): 799-801. [8] BAO Cheng-Guang. Bose-Einstein Condensation in a Two-Dimensional System with Sixty Bosons [J]. Chin. Phys. Lett., 2000, 17(2): 123-125. [9] YIN Jian-ping, Yifu Zhu, WANG Yu-zhu, Min Xiao. Possibility of an Optically-Trapped Bose-Einstein Condensation [J]. Chin. Phys. Lett., 1999, 16(5): 350-352. [10] ZENG Heping, LIN Fucheng. Nonclassical Bose-Einstein Condensate [J]. Chin. Phys. Lett., 1995, 12(10): 593-596.