Dynamically Tunable Perfect Absorbers Utilizing Hexagonal Aluminum Nano-Disk Array Cooperated with Vanadium Dioxide

Funds: Supported by the National Natural Science Foundation of China under Grant No 41675154, the Six Major Talent Peak Expert of Jiangsu Province under Grant Nos 2015-XXRJ-014 and R2016L01, the Jiangsu 333 High-Level Talent Cultivation Program under Grant No BRA2016425, and the Research Innovation Program for College Graduates of Jiangsu Province under Grant No KYCX18_1022.
  • Received Date: August 09, 2018
  • Published Date: December 31, 2018
  • A tunable perfect absorber composed of hexagonal-arranged aluminum nano-disk array embedded in the vanadium dioxide (VO2) film is proposed. The aim is to achieve the tunability of resonance absorption peak in the visible and near-infrared regimes. Numerical results reveal that the absorption peak achieves a large tunability of 76.6% while VO2 undergoes a structural transition from insulator phase to metallic phase. By optimizing the structural parameters, an average absorption of 95% is achieved from 1242 to 1815 nm at the metallic phase state. In addition, the near unity absorption can be fulfilled in a wide range of incident angle (0–60) and under all polarization conditions. The method and results presented here would be beneficial for the design of active optoelectronic devices.
  • Article Text

  • [1]
    Cong L Q, Tan S, Yahiaoui R, Yan F, Zhang W and Singh R 2015 Appl. Phys. Lett. 106 031107 doi: 10.1063/1.4906109

    CrossRef Google Scholar

    [2]
    Montoya J A, Tian Z B, Krishna S and Padilla W J 2017 Opt. Express 25 23343 doi: 10.1364/OE.25.023343

    CrossRef Google Scholar

    [3]
    Huang H L, Xia H, Guo Z B, Xie D and Li H J 2017 Chin. Phys. Lett. 34 117801 doi: 10.1088/0256-307X/34/11/117801

    CrossRef Google Scholar

    [4]
    Matsuno Y and Sakurai A 2017 Opt. Mater. Express 7 618 doi: 10.1364/OME.7.000618

    CrossRef Google Scholar

    [5]
    Zhu S N and Zhang X 2018 Natl. Sci. Rev. 5 131 doi: 10.1093/nsr/nwy026

    CrossRef Google Scholar

    [6]
    Hess O, Pendry J B, Maier S A, Oulton R F, Hamm J M and Tsakmakidis K L 2012 Nat. Mater. 11 573 doi: 10.1038/nmat3356

    CrossRef Google Scholar

    [7]
    Le-Van O, Roux X L, Aassime A and Degiron A 2016 Nat. Commun. 7 12017 doi: 10.1038/ncomms12017

    CrossRef Google Scholar

    [8]
    Nguyen D M, Xu H, Zhang Y and Zhang B 2015 Appl. Phys. Lett. 107 121901 doi: 10.1063/1.4930989

    CrossRef Google Scholar

    [9]
    Boardman A D, Grimalsky V V, Kivshar Y S, Koshevaya S V, Lapine M, Litchinitser N M, Malnev V N, Noginov M, Rapoport Y G and Shalaev V M 2011 Laser Photon. Rev. 5 287 doi: 10.1002/lpor.201000012

    CrossRef Google Scholar

    [10]
    Pope S A and Laalej H 2014 Smart Mater. Struct. 23 075020 doi: 10.1088/0964-1726/23/7/075020

    CrossRef Google Scholar

    [11]
    Hu F G, Xu X, Li P, Xu X L and Wang Y E 2017 Chin. Phys. B 26 074219 doi: 10.1088/1674-1056/26/7/074219

    CrossRef Google Scholar

    [12]
    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra1 M D and Basov D N 2009 Science 325 1518 doi: 10.1126/science.1176580

    CrossRef Google Scholar

    [13]
    Menges F, Dittberner D, Novotny L, Passarello D, Parkin S S P, Spieser M, Riel H and Gotsmann B 2016 Appl. Phys. Lett. 108 171904 doi: 10.1063/1.4948364

    CrossRef Google Scholar

    [14]
    Savo S, Zhou Y, Castaldi G, Moccia M, Galdi V, Ramanathan S and Sato Y 2015 Phys. Rev. B 91 134105 doi: 10.1103/PhysRevB.91.134105

    CrossRef Google Scholar

    [15]
    Wang Y, Zhu J, Yang W, Wen T, Pravica M, Liu Z, Hou M, Fei Y, Kang L, Lin Z, Jin C and Zhao Y 2016 Nat. Commun. 7 12214 doi: 10.1038/ncomms12214

    CrossRef Google Scholar

    [16]
    Wang S, Kang L and Werner D H 2018 Sci. Rep. 8 189 doi: 10.1038/s41598-017-18472-x

    CrossRef Google Scholar

    [17]
    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y and Zhang P X 2012 J. Phys. D 45 235106 doi: 10.1088/0022-3727/45/23/235106

    CrossRef Google Scholar

    [18]
    Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S and Zhang H W 2018 Adv. Opt. Mater. 6 1700620 doi: 10.1002/adom.201700620

    CrossRef Google Scholar

    [19]
    Verleur H W, Barker A S and Berglund C N 1968 Phys. Rev. 172 788 doi: 10.1103/PhysRev.172.788

    CrossRef Google Scholar

    [20]
    Savalya P B, Thomas A, Dua R and Dhawan A 2017 Opt. Express 25 23755 doi: 10.1364/OE.25.023755

    CrossRef Google Scholar

    [21]
    Palik E D 1998 Handbook of Optical Constants of Solids Orlando: Academic Press

    Google Scholar

    [22]
    Ogawa S, Shimatani M, Fukushima S, Okuda S and Matsumoto K 2018 Opt. Express 26 5665 doi: 10.1364/OE.26.005665

    CrossRef Google Scholar

    [23]
    Ito K, Toshiyoshi H and Iizuka H 2016 Opt. Express 24 12803 doi: 10.1364/OE.24.012803

    CrossRef Google Scholar

    [24]
    Liang J, Song X, Li J, Lan K and Li P 2017 J. Alloys Compd. 708 999 doi: 10.1016/j.jallcom.2017.03.110

    CrossRef Google Scholar

    [25]
    Jung L S, Campbell C T, Chinowsky T M, Mar M N and Yee S S 1998 Langmuir 14 5636 doi: 10.1021/la971228b

    CrossRef Google Scholar

    [26]
    Liu P, Yang B C, Liu G, Wu R S, Zhang C J, Wan F, Li S G, Yang J L, Gao Y L and Zhou C H 2017 Chin. Phys. B 26 058401 doi: 10.1088/1674-1056/26/5/058401

    CrossRef Google Scholar

    [27]
    Yu Y, Xiao T H and Li Z Y 2018 Chin. Phys. B 27 017301 doi: 10.1088/1674-1056/27/1/017301

    CrossRef Google Scholar

    [28]
    Zhou P, Zheng G G, Xu L H, Xian F L and Lai M 2018 Opt. Mater. 81 59 doi: 10.1016/j.optmat.2018.05.016

    CrossRef Google Scholar

    [29]
    Länk N O, Verre R, Johansson P and Käll M 2017 Nano Lett. 17 3054 doi: 10.1021/acs.nanolett.7b00416

    CrossRef Google Scholar

  • Related Articles

    [1]CAO Li-Juan, LIU Shu-Juan, LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap [J]. Chin. Phys. Lett., 2012, 29(5): 050305. doi: 10.1088/0256-307X/29/5/050305
    [2]HUANG Bei-Bing, WAN Shao-Long. Polaron in Bose-Einstein-Condensation System [J]. Chin. Phys. Lett., 2009, 26(8): 080302. doi: 10.1088/0256-307X/26/8/080302
    [3]YANG Lu, WANG Xiao-Rui, LI Ke, TAN Xin-Zhou, XIONG Hong-Wei, LU Bao-Long. Low-Energy Collective Excitation of Bose-Einstein Condensates in an Anisotropic Magnetic Trap [J]. Chin. Phys. Lett., 2009, 26(7): 076701. doi: 10.1088/0256-307X/26/7/076701
    [4]LI Hong, WANG D. N.. Dark Soliton of a Growing Bose--Einstein Condensate in an External Trap [J]. Chin. Phys. Lett., 2008, 25(11): 3864-3866.
    [5]ZHANG Ai-Xia, TIAN Shi-Ling, TANG Rong-An, XUE Ju-Kui. Tunnelling Dynamics of Bose--Einstein Condensates in a Five-Well Trap [J]. Chin. Phys. Lett., 2008, 25(10): 3566-3569.
    [6]CHEN Shuai, ZHOU Xiao-Ji, YANG Fan, XIA Lin, WANG Yi-Qiu, CHEN Xu-Zong. Optimization of the Loading Process of the QUIC Magnetic Trap for the Experiment of Bose--Einstein Condensation [J]. Chin. Phys. Lett., 2004, 21(11): 2227-2230.
    [7]WANG Yu-Zhu, ZHOU Shu-Yu, LONG Quan, ZHOU Shan-Yu, FU Hai-Xiang. Evidence for a Bose-Einstein Condensate in Dilute Rb Gas by Absorption Image in a Quadrupole and Ioffe Configuration Trap [J]. Chin. Phys. Lett., 2003, 20(6): 799-801.
    [8]BAO Cheng-Guang. Bose-Einstein Condensation in a Two-Dimensional System with Sixty Bosons [J]. Chin. Phys. Lett., 2000, 17(2): 123-125.
    [9]YIN Jian-ping, Yifu Zhu, WANG Yu-zhu, Min Xiao. Possibility of an Optically-Trapped Bose-Einstein Condensation [J]. Chin. Phys. Lett., 1999, 16(5): 350-352.
    [10]ZENG Heping, LIN Fucheng. Nonclassical Bose-Einstein Condensate [J]. Chin. Phys. Lett., 1995, 12(10): 593-596.

Catalog

    Article views (399) PDF downloads (209) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return