A New Probe: AFM Measurements for Random Disorder Systems

Funds: Supported by TUBITAK under Grant No 115F315.
  • Received Date: September 02, 2018
  • Published Date: December 31, 2018
  • We study the quenched random disorder (QRD) effects created by aerosil dispersion in the octylcyanobiphenyl (8CB) liquid crystal (LC) using atomic force microscopy technique. Gelation process in the 8CB+aerosil gels yields a QRD network which also changes the surface topography. By increasing the aerosil concentration, the original smooth pattern of LC sample surfaces is suppressed by the emergence of a fractal aerosil surface effect and these surfaces become more porous, rougher and they have more and larger crevices. The dispersed aerosil also serves as pinning centers for the liquid crystal molecules. It is observed that via the diffusion-limited-aggregation process, aerosil nano-particles yield a fractal-like surface pattern for the less disordered samples. As the aerosil dispersion increases, the surface can be described by more aggregated regions, which also introduces more roughness. Using this fact, we show that there is a net correlation between the short-range ordered x-ray peak widths (the results of previous x-ray diffraction experiments) and the calculated surface roughness. In other words, we show that these QRD gels can also be characterized by their surface roughness values.
  • Article Text

  • [1]
    Zhou B et al. 1997 Liq. Cryst. 22 335 doi: 10.1080/026782997209405

    CrossRef Google Scholar

    [2]
    Haga H and Garland C W 1997 Phys. Rev. E 56 3044 doi: 10.1103/PhysRevE.56.3044

    CrossRef Google Scholar

    [3]
    Iannacchione G S et al. 1998 Phys. Rev. E 58 5966 doi: 10.1103/PhysRevE.58.5966

    CrossRef Google Scholar

    [4]
    Bellini T et al. 2000 Phys. Rev. Lett. 85 1008 doi: 10.1103/PhysRevLett.85.1008

    CrossRef Google Scholar

    [5]
    Park S et al. 2002 Phys. Rev. E 65 050703 R doi: 10.1103/PhysRevE.65.050703

    CrossRef Google Scholar

    [6]
    Leheny R L et al. 2003 Phys. Rev. E 67 011708 doi: 10.1103/PhysRevE.67.011708

    CrossRef Google Scholar

    [7]
    Frinton Lab, Vienland, NJ 08360

    Google Scholar

    [8]
    Evonik Degussa Corp., Tuzla, Istanbul, TR 34490

    Google Scholar

    [9]
    Ramazanoglu M et al. 2007 Phys. Rev. E 75 061705 doi: 10.1103/PhysRevE.75.061705

    CrossRef Google Scholar

    [10]
    Ramazanoglu M et al. 2004 Phys. Rev. E 69 061706 doi: 10.1103/PhysRevE.69.061706

    CrossRef Google Scholar

    [11]
    Ramazanoglu M et al. 2008 Phys. Rev. E 77 031702 doi: 10.1103/PhysRevE.77.031702

    CrossRef Google Scholar

    [12]
    Freelon B et al. 2011 Phys. Rev. E 84 031705 doi: 10.1103/PhysRevE.84.031705

    CrossRef Google Scholar

    [13]
    A scanning probe microscopy made by nanomagnetics was used with tapping and non-contact mode. The AFM probe tapping frequencies were $\sim$161 kHz for these scans.

    Google Scholar

    [14]
    Raposo M et al. 2007 Modern Research and Educational Topics in Microscopy Badajoz, Spain: Formatex Press p 758

    Google Scholar

    [15]
    Iannacchione G S et al. 2003 Phys. Rev. E 67 011709 doi: 10.1103/PhysRevE.67.011709

    CrossRef Google Scholar

    [16]
    Parvinzadeh M et al. 2010 Appl. Surf. Sci. 256 2792 doi: 10.1016/j.apsusc.2009.11.030

    CrossRef Google Scholar

    [17]
    Buscarino G et al. 2011 J. Non-Cryst. Solids 357 1866 doi: 10.1016/j.jnoncrysol.2010.11.114

    CrossRef Google Scholar

    [18]
    Clegg P S et al. 2003 Phys. Rev. E 67 021703 doi: 10.1103/PhysRevE.67.021703

    CrossRef Google Scholar

    [19]
    Garland C W and Nounesis G 1994 Phys. Rev. E 49 2964 doi: 10.1103/PhysRevE.49.2964

    CrossRef Google Scholar

  • Related Articles

    [1]LUO Kai-Hong, HUANG Bo-Qiang, ZHENG Wei-Mou, WU Ling-An. Nonlocal Imaging by Conditional Averaging of Random Reference Measurements [J]. Chin. Phys. Lett., 2012, 29(7): 074216. doi: 10.1088/0256-307X/29/7/074216
    [2]HU Zheng-Feng, LIN Jin-Da, DENG Jian-Liao, HE Hui-Juan, WANG Yu-Zhu. Gain and Absorption of a Probe Light in an Open Tripod Atomic System [J]. Chin. Phys. Lett., 2012, 29(5): 054207. doi: 10.1088/0256-307X/29/5/054207
    [3]DUAN Ya-Fan, XU Zhen, QIAN Jun, SUN Jian-Fang, JIANG Bo-Nan, HONG Tao. Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates [J]. Chin. Phys. Lett., 2011, 28(10): 100302. doi: 10.1088/0256-307X/28/10/100302
    [4]ZHANG Wei, SUN Li-Zhen, LUO Meng-Bo. Simulation of Dynamics in Two-Dimensional Vortex Systems in Random Media [J]. Chin. Phys. Lett., 2009, 26(2): 027402. doi: 10.1088/0256-307X/26/2/027402
    [5]WANG Qing-Bo, XU Xiang-Fan, TAO Qian, WANG Hong-Tao, XU Zhu-An. Metal--Insulator Transition in Ca-Doped Sr14-xCaxCu24O41 Systems Probed by Thermopower Measurements [J]. Chin. Phys. Lett., 2008, 25(5): 1857-1860.
    [6]WU Di, WANG Yi-Zhen, ZHANG Jin-Xiu. Non-Contact to Contact Transition: Direct Measurements of Interaction Forces between a Solid Probe and a Planar Air--Water Interface [J]. Chin. Phys. Lett., 2007, 24(10): 2914-2917.
    [7]Ekrem Aydiner. Stretched Exponential Relaxation in Disordered Complex Systems: Fractal Time Random Walk Model [J]. Chin. Phys. Lett., 2007, 24(6): 1486-1490.
    [8]FANG Jian-Wen, YIN Qing-Rui, ZHANG Shu-Yi, ZHANG Zhong-Ning, SHUI Xiu-Ji. A New Noncontact Probe for Thermophysical Properties of Solid Surfaces [J]. Chin. Phys. Lett., 2000, 17(9): 634-636.
    [9]ZHOU Ze-bing, LUO Jun. Responses of a New Active Vibration Isolation System to Random Vibrations [J]. Chin. Phys. Lett., 1998, 15(6): 429-431.
    [10]WU Xin-tian, GONG Chang-de. Instability of the Random Fixed Point of Renormalization Group for the Spin Systems with Quenched Disorder [J]. Chin. Phys. Lett., 1997, 14(3): 165-168.

Catalog

    Article views (461) PDF downloads (365) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return