Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 11475230 and U1532262.
  • Received Date: May 22, 2018
  • Published Date: August 31, 2018
  • Metallic nanoparticle (NP) shapes have a significant influence on the property of composite embedded with metallic NPs. Swift heavy ion irradiation is an effective way to modify shapes of metallic NPs embedded in an amorphous matrix. We investigate the shape deformation of Ag NPs with irradiation fluence, and 357 MeV Ni ions are used to irradiate the silica containing Ag NPs, which are prepared by ion implantation and vacuum annealing. The UV-vis results show that the surface plasmon resonance (SPR) peak from Ag NPs shifts from 400 to 377 nm. The SPR peak has a significant shift at fluence lower than 1×1014 ions/cm2 and shows less shift at fluence higher than 1×1014 ions/cm2. The TEM results reveal that the shapes of Ag NPs also show significant deformation at fluence lower than 1×1014 ions/cm2 and show less deformation at fluence higher than 1×1014 ions/cm2. The blue shift of the SPR peak is considered to be the consequence of defect production and Ag NP shape deformation. Based on the thermal spike model calculation, the temperature of the silica surrounding Ag particles first increases rapidly, then the region of Ag NPs close to the interface of Ag/silica is gradually heated. Therefore, the driven force of Ag NPs deformation is considered as the volume expansion of the first heated silica layer surrounding Ag NPs.
  • Article Text

  • [1]
    Meldrum A, Haglund Jr R F, Boatner L A and White C W 3.0.CO;2-Z">2001 Adv. Mater. 13 1431 doi: 10.1002/1521-409520011013:19<1431::AID-ADMA1431>3.0.CO;2-Z

    CrossRef 2001 Adv. Mater. 13 1431" target="_blank">Google Scholar

    [2]
    Kreibig U and Genzel L 1985 Surf. Sci. 156 678 doi: 10.1016/0039-60288590239-0

    CrossRef Google Scholar

    [3]
    Mulvaney P 2011 MRS Bull. 26 1009

    Google Scholar

    [4]
    Roorda S, Dillen T, Polman A, Graf C and Blaaderen A 2004 Adv. Mater. 16 235 doi: 10.1002/adma.200305742

    CrossRef Google Scholar

    [5]
    Orleans C D, Stoquert J P, Estournes C, Cerruti C, Grob J J, Guille J L, Hass F, Muller D and Richard-Plouet M 2003 Phys. Rev. B 67 220101 doi: 10.1103/PhysRevB.67.220101

    CrossRef Google Scholar

    [6]
    Oliver A, Reys-Esqueda J A, Cheang-Wong J C, Roman-Velazquez C E, Crespo-Sosa A, Rodriguez-Fernandez L, Seman J A and Noguez C 2006 Phys. Rev. B 74 245425 doi: 10.1103/PhysRevB.74.245425

    CrossRef Google Scholar

    [7]
    Dawi E A, Rizza G, Mink M P, Vredenberg A M and Habraken F H P M 2009 J. Appl. Phys. 105 074305 doi: 10.1063/1.3103267

    CrossRef Google Scholar

    [8]
    Penninkhof J J, van Dillen T, Roorda S, Graf C, van Blaadern A, Vredenberg A M and Polman A 2006 Nucl. Instrum. Methods Phys. Res. Sect. B 242 523 doi: 10.1016/j.nimb.2005.08.116

    CrossRef Google Scholar

    [9]
    Ridgway M C, Giulian R, Sprouster D J, Kluth P, Araujo L L, Llewellyn D J, Byrne A P, Kremer F, Fichtner P F P, Rizza G, Amekura H and Toulemonde M 2011 Phys. Rev. Lett. 106 095505 doi: 10.1103/PhysRevLett.106.095505

    CrossRef Google Scholar

    [10]
    Orleans C D, Stoquert J P, Estournes C, Grob J J, Muller D, Guille J L, Richard-Plouet M, Cerruti C and Hass F 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 216 372 doi: 10.1016/j.nimb.2003.11.063

    CrossRef Google Scholar

    [11]
    Orleans C D, Stoquert J P, Estournes C, Grob J J, Muller D, Cerruti C and Hass F 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 225 154 doi: 10.1016/j.nimb.2004.06.012

    CrossRef Google Scholar

    [12]
    Giulian R, Kluth P, Sprouster D J, Araujo L L, Byrne A and Ridgway M C 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 3158 doi: 10.1016/j.nimb.2008.03.176

    CrossRef Google Scholar

    [13]
    Kumar H, Ghosh S, Avasthi D K, Kabiraj D, Mücklich A, Zhou S Q, Schmidt H and Stoquert J P 2011 Nanoscale Res. Lett. 6 155 doi: 10.1186/1556-276X-6-155

    CrossRef Google Scholar

    [14]
    Amekura H, Ishikawa N, Okubo N, Ridgway M C, Giulian R, Mitsuishi K, Nakayama Y, Buchal Ch, Mantl S and Kishimoto N 2011 Phys. Rev. B 83 205401 doi: 10.1103/PhysRevB.83.205401

    CrossRef Google Scholar

    [15]
    Giulian R, Kluth P, Araujo L L, Sprouster D J, Byrne A P, Cookson D J and Ridgway M C 2008 Phys. Rev. B 78 125413 doi: 10.1103/PhysRevB.78.125413

    CrossRef Google Scholar

    [16]
    Ridgway M C, Kluth P, Giulian R, Sprouster D J, Araujo L L, Schnohr C S, Llewellyn D J, Byrne A P, Foran G J and Cookson D J 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 931 doi: 10.1016/j.nimb.2009.02.025

    CrossRef Google Scholar

    [17]
    Coulon P, Amici J, Clochard M, Khomenkov V, Durour C, Monnet I, Grygiel C, Perruchas S, Ulysse C, Largeau L and Rizza G 2016 Sci. Rep. 6 21116 doi: 10.1038/srep21116

    CrossRef Google Scholar

    [18]
    Awazu K, Wang X, Fujimaki M, Tominaga J, Aiba H, Ohki Y and Komatsubara T 2008 Phys. Rev. B 78 054102 doi: 10.1103/PhysRevB.78.054102

    CrossRef Google Scholar

    [19]
    Ridgway M C, Djurabekova F and Nordlund K 2015 Curr. Opin. Solid State Mater. Sci. 19 29 doi: 10.1016/j.cossms.2014.10.001

    CrossRef Google Scholar

    [20]
    Ziegler J F, Biersack J P and Littmark U 1985 The Stopping and Range of Ions in Solids New York: Pergamon

    Google Scholar

    [21]
    Mie G 1908 Ann. Phys. 330 377 doi: 10.1002/andp.19083300302

    CrossRef Google Scholar

    [22]
    Yang Y, Zhang C, Song Y, Gou J, Zhang L Q, Meng Y C, Zhang H Q and Ma Y Z 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 308 24 doi: 10.1016/j.nimb.2013.05.004

    CrossRef Google Scholar

    [23]
    Rizza G, Coulon P E, Khomenkov V, Dufour C, Monnet I, Toulemonde M, Perruchas S, Gacoin T, Mailly D, Lafosse X, Ulysse C and Dawi E A 2012 Phys. Rev. B 86 035450 doi: 10.1103/PhysRevB.86.035450

    CrossRef Google Scholar

    [24]
    Dufour C, Khomenkov V, Rizza G and Toulemonde M 2012 J. Phys. D 45 065302 doi: 10.1088/0022-3727/45/6/065302

    CrossRef Google Scholar

    [25]
    Toulemonde M, Dufour C and Paumier E 1992 Phys. Rev. B 46 14362 doi: 10.1103/PhysRevB.46.14362

    CrossRef Google Scholar

    [26]
    Singh F, Mohapatra S, Stoquert J, Avasthi D K and Pivin J C 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 936 doi: 10.1016/j.nimb.2009.02.026

    CrossRef Google Scholar

  • Related Articles

    [1]FAN Ping, LIANG Guang-Xing, ZHENG Zhuang-Hao, CAI Xing-Min, ZHANG Dong-Ping. Growth and Characterization of CIS Thin Films Prepared by Ion Beam Sputtering Deposition [J]. Chin. Phys. Lett., 2010, 27(4): 046801. doi: 10.1088/0256-307X/27/4/046801
    [2]LI Wei, MA Zhong-Quan, WANG Ye, WANG De-Ming. Optimization of Energy Scope for Titanium Nitride Films Grown by Ion Beam-Assisted Deposition [J]. Chin. Phys. Lett., 2006, 23(1): 178-181.
    [3]MEI Xian-Xiu, LIU Zhen-Min, MA Teng-Cai, DONG Chuang. Deposition of Diamond-Like Carbon Films by High-Intensity PulsedIon Beam Ablation at Various Substrate Temperatures [J]. Chin. Phys. Lett., 2003, 20(9): 1619-1621.
    [4]LU Xian-Feng, LI Jin-Chai, GUO Huai-Xi, ZHANG Zhi-Hong, YE Ming-Sheng. Electron Field Emission of CNx Thin Films Prepared by Low Pressure Plasma Enhanced Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2002, 19(3): 416-418.
    [5]MEN Chuan-Ling, XU Zheng, ZHENG Zhi-Hong, DUO Xin-Zhong, ZHANG Miao, LIN Cheng-Lu. Preparation of AlN Films by Ion-Beam-Enhanced Deposition [J]. Chin. Phys. Lett., 2001, 18(9): 1282-1284.
    [6]WANG Pei-nan, Pan Qi, Cheung Nai-Ho, Chen Shu-Chi. A Novel Application of the Pulsed Nitrogen Discharge in the Synthesis of Aluminum Nitride Powder by Laser Ablation [J]. Chin. Phys. Lett., 1997, 14(12): 953-956.
    [7]YING Zhi-feng, REN Zhong-min, DU Yuan-cheng, LI Fu-ming, LIN Jing, REN Yun-zhu, ZONG Xiang-fu. Ion-Beam Bombarding Effects on Deposition of Carbon Nitride Films by Laser Ablation [J]. Chin. Phys. Lett., 1996, 13(11): 878-880.
    [8]REN Zhong-min, DU Yuan-cheng, YING Zhi-feng, LI Fu-ming, LIN Jing, REN Yun-Zhu, ZONG Xiang-fu. Formation of Carbon Nitride Films by Nitrogen Ion Bombardment on C60 Films [J]. Chin. Phys. Lett., 1996, 13(9): 714-717.
    [9]MAN Zhenyong, PAN Zhengying, LIU Lei, LI Rongwu. Molecular Dynamics Simulation of Low-Energy C60 in Collision with a Graphite (0001) Surface [J]. Chin. Phys. Lett., 1995, 12(12): 751-754.
    [10]HAN Lijun, JIANG Xingliu. Transformation of Graphite to Diamond by Bombardment of Intense Pulsed Electron Beams [J]. Chin. Phys. Lett., 1992, 9(4): 194-197.

Catalog

    Article views (121) PDF downloads (305) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return