An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems
-
Abstract
We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forward scattering dominates. At the same time, this model provides an efficiency gain of an order of magnitude or more over two-way coupled-mode models. This model can be applied to three-dimensional range-dependent problems with a slowly varying bathymetry or internal waves. A numerical example of the latter is demonstrated in this work. Comparisons of both accuracy and efficiency between the present model and a benchmark model are also provided.
Article Text
-
-
-
About This Article
Cite this article:
Ze-Zhong Zhang, Wen-Yu Luo, Ren-He Zhang. An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems[J]. Chin. Phys. Lett., 2018, 35(8): 084301. DOI: 10.1088/0256-307X/35/8/084301
Ze-Zhong Zhang, Wen-Yu Luo, Ren-He Zhang. An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems[J]. Chin. Phys. Lett., 2018, 35(8): 084301. DOI: 10.1088/0256-307X/35/8/084301
|
Ze-Zhong Zhang, Wen-Yu Luo, Ren-He Zhang. An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems[J]. Chin. Phys. Lett., 2018, 35(8): 084301. DOI: 10.1088/0256-307X/35/8/084301
Ze-Zhong Zhang, Wen-Yu Luo, Ren-He Zhang. An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems[J]. Chin. Phys. Lett., 2018, 35(8): 084301. DOI: 10.1088/0256-307X/35/8/084301
|