Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain

Funds: Supported by the National Natural Science Foundation of China under Grant No 11274379, and the Research Funds of Renmin University of China under Grant No 14XNLQ07.
  • Received Date: February 11, 2018
  • Published Date: June 30, 2018
  • A one-dimensional closed interacting Kitaev chain and the dimerized version are studied. The topological invariants in terms of Green's function are calculated by the density matrix renormalization group method and the exact diagonalization method. For the interacting Kitaev chain, we point out that the calculation of the topological invariant in the charge density wave phase must consider the dimerized configuration of the ground states. The variation of the topological invariant is attributed to the poles of eigenvalues of the zero-frequency Green functions. For the interacting dimerized Kitaev chain, we show that the topological invariant defined by Green's functions can distinguish more topological nonequivalent phases than the fermion parity.
  • Article Text

  • [1]
    Kitaev A Y 2001 Phys. Usp. 44 131 doi: 10.1070/1063-7869/44/10S/S29

    CrossRef Google Scholar

    [2]
    Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 doi: 10.1103/RevModPhys.88.035005

    CrossRef Google Scholar

    [3]
    Alicea J 2012 Rep. Prog. Phys. 75 076501 doi: 10.1088/0034-4885/75/7/076501

    CrossRef Google Scholar

    [4]
    Stoudenmire E M, Alicea J, Starykh O A and Fisher M P A 2011 Phys. Rev. B 84 014503 doi: 10.1103/PhysRevB.84.014503

    CrossRef Google Scholar

    [5]
    Gangadharaiah S, Braunecker B, Simon P and Loss D 2011 Phys. Rev. Lett. 107 036801 doi: 10.1103/PhysRevLett.107.036801

    CrossRef Google Scholar

    [6]
    Hassler F and Schuricht D 2012 New J. Phys. 14 125018 doi: 10.1088/1367-2630/14/12/125018

    CrossRef Google Scholar

    [7]
    Thomale R, Rachel S and Schmitteckert P 2013 Phys. Rev. B 88 161103R doi: 10.1103/PhysRevB.88.161103

    CrossRef Google Scholar

    [8]
    Chan Y H, Chiu C K and Sun K 2015 Phys. Rev. B 92 104514 doi: 10.1103/PhysRevB.92.104514

    CrossRef Google Scholar

    [9]
    Katsura H, Schuricht D and Takahashi M 2015 Phys. Rev. B 92 115137 doi: 10.1103/PhysRevB.92.115137

    CrossRef Google Scholar

    [10]
    Rahmani A, Zhu X, Franz M and Affleck I 2015 Phys. Rev. Lett. 115 166401 doi: 10.1103/PhysRevLett.115.166401

    CrossRef Google Scholar

    [11]
    Gergs N M, Fritz L and Schuricht D 2016 Phys. Rev. B 93 075129 doi: 10.1103/PhysRevB.93.075129

    CrossRef Google Scholar

    [12]
    Miao J J, Jin H K, Zhang F C and Zhou Y 2017 Phys. Rev. Lett. 118 267701 doi: 10.1103/PhysRevLett.118.267701

    CrossRef Google Scholar

    [13]
    Volovik G E 2003 The Universe in a Helium Droplet New York: Oxford University Press

    Google Scholar

    [14]
    Wang Z, Qi X L and Zhang S C 2010 Phys. Rev. Lett. 105 256803 doi: 10.1103/PhysRevLett.105.256803

    CrossRef Google Scholar

    [15]
    Wang Z, Qi X L and Zhang S C 2012 Phys. Rev. B 85 165126 doi: 10.1103/PhysRevB.85.165126

    CrossRef Google Scholar

    [16]
    Wang Z and Zhang S C 2012 Phys. Rev. X 2 031008 doi: 10.1103/PhysRevX.2.031008

    CrossRef Google Scholar

    [17]
    Wang Z and Zhang S C 2012 Phys. Rev. B 86 165116 doi: 10.1103/PhysRevB.86.165116

    CrossRef Google Scholar

    [18]
    Gurarie V 2011 Phys. Rev. B 83 085426 doi: 10.1103/PhysRevB.83.085426

    CrossRef Google Scholar

    [19]
    Manmana S R, Essin A M, Noack R M and Gurarie V 2012 Phys. Rev. B 86 205119 doi: 10.1103/PhysRevB.86.205119

    CrossRef Google Scholar

    [20]
    Wang Z and Yan B 2013 J. Phys.: Condens. Matter 25 155601 doi: 10.1088/0953-8984/25/15/155601

    CrossRef Google Scholar

    [21]
    Yoshida T, Peters R, Fujimoto S and Kawakami N 2014 Phys. Rev. Lett. 112 196404 doi: 10.1103/PhysRevLett.112.196404

    CrossRef Google Scholar

    [22]
    Slager R J, Rademaker L, Zaanen J and Balents L 2015 Phys. Rev. B 92 085126 doi: 10.1103/PhysRevB.92.085126

    CrossRef Google Scholar

    [23]
    Ng H T 2015 Sci. Rep. 5 12530 doi: 10.1038/srep12530

    CrossRef Google Scholar

    [24]
    Pinheiro F, Bruun G M, Martikainen J P and Larson J 2013 Phys. Rev. Lett. 111 205302 doi: 10.1103/PhysRevLett.111.205302

    CrossRef Google Scholar

    [25]
    White S 1992 Phys. Rev. Lett. 69 2863 doi: 10.1103/PhysRevLett.69.2863

    CrossRef Google Scholar

    [26]
    White S 1993 Phys. Rev. B 48 10345 doi: 10.1103/PhysRevB.48.10345

    CrossRef Google Scholar

    [27]
    Schollwöck U 2005 Rev. Mod. Phys. 77 259 doi: 10.1103/RevModPhys.77.259

    CrossRef Google Scholar

    [28]
    Zubarev D N 1960 Phys. Usp. 3 320

    Google Scholar

    [29]
    Wakatsuki R, Ezawa M, Tanaka Y and Nagaosa N 2014 Phys. Rev. B 90 014505 doi: 10.1103/PhysRevB.90.014505

    CrossRef Google Scholar

  • Related Articles

    [1]FAN Zhi-Qiang, ZHANG Zhen-Hua, QIU Ming, DENG Xiao-Qing, TANG Gui-Ping. Controllable Negative Differential Resistance Behavior of an Azobenzene Molecular Device Induced by Different Molecule-Electrode Distances [J]. Chin. Phys. Lett., 2012, 29(7): 077305. doi: 10.1088/0256-307X/29/7/077305
    [2]REN Hua, LIANG Wei, ZHAO Peng, LIU De-Sheng. Low Bias Negative Differential Resistance with Large Peak-to-Valley Ratio in a BDC60 Junction [J]. Chin. Phys. Lett., 2012, 29(7): 077301. doi: 10.1088/0256-307X/29/7/077301
    [3]FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot [J]. Chin. Phys. Lett., 2012, 29(3): 037303. doi: 10.1088/0256-307X/29/3/037303
    [4]YIN Hai-Tao, LÜ Tian-Quan, LIU Xiao-Jie, XUE Hui-Jie. Spin Accumulation in a Double Quantum Dot Aharonov-Bohm Interferometer [J]. Chin. Phys. Lett., 2009, 26(4): 047302. doi: 10.1088/0256-307X/26/4/047302
    [5]YANG Yuan, LI Gui-Ping, GAO Yong, LIU Jing. Characteristics Analysis of Vertical Double Gate Strained Channel Heterostructure Metal-Oxide-Semiconductor-Field-Effect-Transistor [J]. Chin. Phys. Lett., 2009, 26(2): 027801. doi: 10.1088/0256-307X/26/2/027801
    [6]CHENG Jian-Bing, ZHANG Bo, DUAN Bao-Xing, LI Zhao-Ji. A Novel Super-Junction Lateral Double-Diffused Metal--Oxide--Semiconductor Field Effect Transistor with n-Type Step Doping Buffer Layer [J]. Chin. Phys. Lett., 2008, 25(1): 262-265.
    [7]YANG Fu-Bin, WU Shao-Quan, SUN Wei-Li. Spin-Polarized Transport through the T-Shaped Double Quantum Dots with Fano--Kondo Interaction [J]. Chin. Phys. Lett., 2007, 24(7): 2056-2059.
    [8]HE Jin, BIAN Wei, TAO Ya-Dong, LIU Feng, SONG Yan, ZHANG Xing. Numerical Study on a Lateral Double-Gate Tunnelling Field Effect Transistor [J]. Chin. Phys. Lett., 2006, 23(12): 3373-3375.
    [9]LI Xian-Jie, YAN Fa-Wang, ZHANG Wen-Jun, ZHANG Rong-Gui, LIU Wei-Ji, AO Jin-Ping, ZENG Qing-Ming, LIU Shi-Yong, LIANG Chun-Guang. Field Effect Transistor with Self-Organized In0.15Ga0.85As/GaAs Quantum Wires as a Channel Grown on (553)B GaAs Substrates [J]. Chin. Phys. Lett., 2001, 18(8): 1147-1149.
    [10]LIU Bo, ZHANG Guang-cai, DAI Jian-hua, ZHANG Hong-jun. Eigenvalues and Eigenfunctions of a Stadium-Shaped Quantum Dot Subjected to a Perpendicular Magnetic Field [J]. Chin. Phys. Lett., 1998, 15(9): 628-630.

Catalog

    Article views (603) PDF downloads (867) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return