Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain
-
Abstract
A one-dimensional closed interacting Kitaev chain and the dimerized version are studied. The topological invariants in terms of Green's function are calculated by the density matrix renormalization group method and the exact diagonalization method. For the interacting Kitaev chain, we point out that the calculation of the topological invariant in the charge density wave phase must consider the dimerized configuration of the ground states. The variation of the topological invariant is attributed to the poles of eigenvalues of the zero-frequency Green functions. For the interacting dimerized Kitaev chain, we show that the topological invariant defined by Green's functions can distinguish more topological nonequivalent phases than the fermion parity. -
-
References
[1] Kitaev A Y 2001 Phys. Usp. 44 131 doi: 10.1070/1063-7869/44/10S/S29[2] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 doi: 10.1103/RevModPhys.88.035005[3] Alicea J 2012 Rep. Prog. Phys. 75 076501 doi: 10.1088/0034-4885/75/7/076501[4] Stoudenmire E M, Alicea J, Starykh O A and Fisher M P A 2011 Phys. Rev. B 84 014503 doi: 10.1103/PhysRevB.84.014503[5] Gangadharaiah S, Braunecker B, Simon P and Loss D 2011 Phys. Rev. Lett. 107 036801 doi: 10.1103/PhysRevLett.107.036801[6] Hassler F and Schuricht D 2012 New J. Phys. 14 125018 doi: 10.1088/1367-2630/14/12/125018[7] Thomale R, Rachel S and Schmitteckert P 2013 Phys. Rev. B 88 161103R doi: 10.1103/PhysRevB.88.161103[8] Chan Y H, Chiu C K and Sun K 2015 Phys. Rev. B 92 104514 doi: 10.1103/PhysRevB.92.104514[9] Katsura H, Schuricht D and Takahashi M 2015 Phys. Rev. B 92 115137 doi: 10.1103/PhysRevB.92.115137[10] Rahmani A, Zhu X, Franz M and Affleck I 2015 Phys. Rev. Lett. 115 166401 doi: 10.1103/PhysRevLett.115.166401[11] Gergs N M, Fritz L and Schuricht D 2016 Phys. Rev. B 93 075129 doi: 10.1103/PhysRevB.93.075129[12] Miao J J, Jin H K, Zhang F C and Zhou Y 2017 Phys. Rev. Lett. 118 267701 doi: 10.1103/PhysRevLett.118.267701[13] Volovik G E 2003 The Universe in a Helium Droplet New York: Oxford University Press[14] Wang Z, Qi X L and Zhang S C 2010 Phys. Rev. Lett. 105 256803 doi: 10.1103/PhysRevLett.105.256803[15] Wang Z, Qi X L and Zhang S C 2012 Phys. Rev. B 85 165126 doi: 10.1103/PhysRevB.85.165126[16] Wang Z and Zhang S C 2012 Phys. Rev. X 2 031008 doi: 10.1103/PhysRevX.2.031008[17] Wang Z and Zhang S C 2012 Phys. Rev. B 86 165116 doi: 10.1103/PhysRevB.86.165116[18] Gurarie V 2011 Phys. Rev. B 83 085426 doi: 10.1103/PhysRevB.83.085426[19] Manmana S R, Essin A M, Noack R M and Gurarie V 2012 Phys. Rev. B 86 205119 doi: 10.1103/PhysRevB.86.205119[20] Wang Z and Yan B 2013 J. Phys.: Condens. Matter 25 155601 doi: 10.1088/0953-8984/25/15/155601[21] Yoshida T, Peters R, Fujimoto S and Kawakami N 2014 Phys. Rev. Lett. 112 196404 doi: 10.1103/PhysRevLett.112.196404[22] Slager R J, Rademaker L, Zaanen J and Balents L 2015 Phys. Rev. B 92 085126 doi: 10.1103/PhysRevB.92.085126[23] Ng H T 2015 Sci. Rep. 5 12530 doi: 10.1038/srep12530[24] Pinheiro F, Bruun G M, Martikainen J P and Larson J 2013 Phys. Rev. Lett. 111 205302 doi: 10.1103/PhysRevLett.111.205302[25] White S 1992 Phys. Rev. Lett. 69 2863 doi: 10.1103/PhysRevLett.69.2863[26] White S 1993 Phys. Rev. B 48 10345 doi: 10.1103/PhysRevB.48.10345[27] Schollwöck U 2005 Rev. Mod. Phys. 77 259 doi: 10.1103/RevModPhys.77.259[28] Zubarev D N 1960 Phys. Usp. 3 320[29] Wakatsuki R, Ezawa M, Tanaka Y and Nagaosa N 2014 Phys. Rev. B 90 014505 doi: 10.1103/PhysRevB.90.014505 -
Related Articles