Effect of Bias Voltage on Microstructure and Mechanical Properties of Nanocomposite ZrCN Films Deposited by Filtered Cathodic Vacuum Arc

Funds: Supported by the National Natural Science Foundation of China under Grant No 51171028.
  • Received Date: December 17, 2017
  • Published Date: May 31, 2018
  • Nanocomposite ZrCN films consisting of nanocrystalline ZrCN grains embedded in nitrogen-doped amorphous carbon film are deposited by filtered cathodic vacuum arc technology under different bias voltages ranging from 50 to 400 V. The influence of bias voltage on the characterization and the mechanical properties of the ZrCN films are investigated by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and nano-indentation. The bias voltage has a subtle effect on the ZrCN grain size, which is around 9.5 nm and keeps almost constant. A slight increase of the bias voltage induces a relatively high sp3 fraction about 40% in N-doped amorphous C films but leads to the graphitization of the films under a higher voltage. The best mechanical property of the ZrCN film with the hardness of 41 GPa is obtained under the bias voltage of 200 V, indicating the positive effect of slight increase of ion bombardment on the hardness of the films.
  • Article Text

  • [1]
    Vetter J 2014 Surf. Coat. Technol. 257 213 doi: 10.1016/j.surfcoat.2014.08.017

    CrossRef Google Scholar

    [2]
    Charitidis C A 2010 Int. J. Refract. Met. Hard Mater. 28 51 doi: 10.1016/j.ijrmhm.2009.08.003

    CrossRef Google Scholar

    [3]
    Bewilogua K and Hofmann D 2014 Surf. Coat. Technol. 242 214 doi: 10.1016/j.surfcoat.2014.01.031

    CrossRef Google Scholar

    [4]
    Liu L, Zhou S G, Liu Z B, Wang Y C and Ma L Q 2016 Chin. Phys. Lett. 33 026801 doi: 10.1088/0256-307X/33/2/026801

    CrossRef Google Scholar

    [5]
    Bookul D, Saenphinit N, Supsermpol B, Aramwit C and Intarasiri S 2014 Appl. Surf. Sci. 310 293 doi: 10.1016/j.apsusc.2014.04.053

    CrossRef Google Scholar

    [6]
    Cui F Z and Li D J 2000 Surf. Coat. Technol. 131 481 doi: 10.1016/S0257-89720000809-4

    CrossRef Google Scholar

    [7]
    Braic M, Braic V, Balaceanu M, Zoita C N, Kiss A, Vladescu A, Popescu A and Ripeanu R 2011 Mater. Chem. Phys. 126 818 doi: 10.1016/j.matchemphys.2010.12.036

    CrossRef Google Scholar

    [8]
    Gu J D and Chen P L 2006 Surf. Coat. Technol. 200 3341 doi: 10.1016/j.surfcoat.2005.07.049

    CrossRef Google Scholar

    [9]
    Yate L, Martínez-de-Olcoz L, Esteve J and Lousa A 2012 Surf. Coat. Technol. 206 2877 doi: 10.1016/j.surfcoat.2011.12.015

    CrossRef Google Scholar

    [10]
    Anders A 2010 Thin Solid Films 518 4087 doi: 10.1016/j.tsf.2009.10.145

    CrossRef Google Scholar

    [11]
    Zhou F Z, Fu K H, Liao B, Yu J J, Yang C L and Zhang X 2015 Appl. Surf. Sci. 327 350 doi: 10.1016/j.apsusc.2014.11.181

    CrossRef Google Scholar

    [12]
    Dorcioman G, Socol G, Craciun D, Argibay N, Lambers E, Hanna M, Taylor C R and Craciun V 2014 Appl. Surf. Sci. 306 33 doi: 10.1016/j.apsusc.2013.12.048

    CrossRef Google Scholar

    [13]
    Cotrut C M, Braic V, Balaceanu M, Titorencu I, Brai M and Parau A C 2013 Thin Solid Films 538 48 doi: 10.1016/j.tsf.2012.12.100

    CrossRef Google Scholar

    [14]
    Ferrari A C, Rodil S E and Robertson J 2003 Phys. Rev. B 67 155306 doi: 10.1103/PhysRevB.67.155306

    CrossRef Google Scholar

    [15]
    Vepřek S and Reiprich S 1995 Thin Solid Films 268 64 doi: 10.1016/0040-60909506695-0

    CrossRef Google Scholar

    [16]
    Lu C S, Mai Y W and Shen Y G 2006 J. Mater. Sci. 41 937 doi: 10.1007/s10853-006-6577-9

    CrossRef Google Scholar

    [17]
    Guo J, Liu Z J, Wang S W and Shen Y G 2013 Scr. Mater. 69 662 doi: 10.1016/j.scriptamat.2013.07.023

    CrossRef Google Scholar

  • Related Articles

    [1]Krishnendu Bhattacharyya, G. C. Layek. MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing [J]. Chin. Phys. Lett., 2011, 28(8): 084705. doi: 10.1088/0256-307X/28/8/084705
    [2]T. Hayat, Liaqat Ali. Khan, R. Ellahi, S. Obaidat. Exact Solutions on MHD Flow Past an Accelerated Porous Plate in a Rotating Frame [J]. Chin. Phys. Lett., 2011, 28(5): 054701. doi: 10.1088/0256-307X/28/5/054701
    [3]Krishnendu Bhattacharyya, Swati Mukhopadhyay, G. C. Layek. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate [J]. Chin. Phys. Lett., 2011, 28(2): 024701. doi: 10.1088/0256-307X/28/2/024701
    [4]Choon Ki Ahn. A Passivity Based Synchronization for Chaotic Behavior in Nonlinear BlochEquations [J]. Chin. Phys. Lett., 2010, 27(1): 010503. doi: 10.1088/0256-307X/27/1/010503
    [5]LI Bo-Tong, ZHENG Lian-Cun, ZHANG Xin-Xin. Multiple Solutions of Laminar Flow in Channels with a Transverse Magnetic Field [J]. Chin. Phys. Lett., 2009, 26(9): 094101. doi: 10.1088/0256-307X/26/9/094101
    [6]Anuar Ishak, Roslinda Nazar, Ioan Pop. MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux [J]. Chin. Phys. Lett., 2009, 26(1): 014702. doi: 10.1088/0256-307X/26/1/014702
    [7]WU Zheng-Wei, ZHANG Wen-Lu, LI Ding, YANG Wei-Hong. Effect of Magnetic Field and Equilibrium Flow on Rayleigh-Taylor Instability [J]. Chin. Phys. Lett., 2004, 21(10): 2001-2004.
    [8]CHEN Yin-Hua, WANG Ge, TAN Li-Wei. Nonlinear Inertial Alfvén Waves in Plasmas with Sheared Magnetic Field and Flow [J]. Chin. Phys. Lett., 2004, 21(5): 888-890.
    [9]CHEN Weizhong, WEI Rongjue, WANG Benren. Chaotic Behavior of Solitary Wave in Liquid [J]. Chin. Phys. Lett., 1995, 12(11): 677-680.
    [10]QIU Xiaoming (S.M.CHIU), WANG Xiaogang. A NEW STRANGE ATTRACTOR IN MHD FLOW IN SHEARED MAGNETIC FIELD [J]. Chin. Phys. Lett., 1986, 3(3): 105-108.

Catalog

    Article views (262) PDF downloads (456) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return