Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js

Effect of Hyper-Resistivity on Nonlinear Tearing Modes

Funds: Supported by the National Natural Science Foundation of China under Grant No 11675257, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB16010300, the Key Research Program of Frontier Science of Chinese Academy of Sciences under Grant No QYZDJ-SSW-SYS016, and the External Cooperation Program of Chinese Academy of Sciences under Grant No 112111KYSB20160039. This material is based upon the work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, LLNL-JRNL-748586.
  • Received Date: March 25, 2018
  • Published Date: May 31, 2018
  • We analytically investigate nonlinear tearing modes with the anomalous electron viscosity or, as it is normally called, hyper-resistivity. In contrast to the flux average method used by previous work, we employ the standard singular perturbation technique and a quasilinear method to obtain the time evolution equation of tearing modes. The result that the magnetic flux grows with time in a scaling as t2/3 demonstrates that nonlinear tearing modes with the hyper-resistivity effect alone have a weaker dependence on time than that of the corresponding resistive case.
  • Article Text

  • [1]
    Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459 doi: 10.1063/1.1706761

    CrossRef Google Scholar

    [2]
    Furth H, Rutherford P and Selberg H 1973 Phys. Fluids 16 1054 doi: 10.1063/1.1694467

    CrossRef Google Scholar

    [3]
    Rutherford P H 1973 Phys. Fluids 16 1903 doi: 10.1063/1.1694232

    CrossRef Google Scholar

    [4]
    White R B, Monticello D A, Rosenbluth M N et al. 1977 Phys. Fluids 20 800 doi: 10.1063/1.861939

    CrossRef Google Scholar

    [5]
    Strauss H R 1986 Phys. Fluids 29 3668 doi: 10.1063/1.865798

    CrossRef Google Scholar

    [6]
    Kaw P K, Valeo E J and Rutherford P H 1979 Phys. Rev. Lett. 43 1398 doi: 10.1103/PhysRevLett.43.1398

    CrossRef Google Scholar

    [7]
    Aydemir A Y 1990 Phys. Fluids B: Plasma Phys. 2 2135 doi: 10.1063/1.859433

    CrossRef Google Scholar

    [8]
    Xu X Q, Dudson B, Snyder P B et al. 2010 Phys. Rev. Lett. 105 175005 doi: 10.1103/PhysRevLett.105.175005

    CrossRef Google Scholar

    [9]
    Huang Y M, Bhattacharjee A and Forbes T G 2013 Phys. Plasmas 20 082131 doi: 10.1063/1.4819715

    CrossRef Google Scholar

    [10]
    Vekstein G 2016 Phys. Plasmas 23 024502 doi: 10.1063/1.4941280

    CrossRef Google Scholar

    [11]
    Schmidt J and Yoshikawa S 1971 Phys. Rev. Lett. 26 753 doi: 10.1103/PhysRevLett.26.753

    CrossRef Google Scholar

    [12]
    Li D 1995 Phys. Plasmas 2 3275 doi: 10.1063/1.871162

    CrossRef Google Scholar

    [13]
    Cai H, Dou X and Li D 2010 Phys. Plasmas 17 032111 doi: 10.1063/1.3328819

    CrossRef Google Scholar

Catalog

    Article views (131) PDF downloads (382) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return