1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Lawrence Livermore National Laboratory, Livermore, California 94550, USA
Funds: Supported by the National Natural Science Foundation of China under Grant No 11675257, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB16010300, the Key Research Program of Frontier Science of Chinese Academy of Sciences under Grant No QYZDJ-SSW-SYS016, and the External Cooperation Program of Chinese Academy of Sciences under Grant No 112111KYSB20160039. This material is based upon the work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, LLNL-JRNL-748586.
We analytically investigate nonlinear tearing modes with the anomalous electron viscosity or, as it is normally called, hyper-resistivity. In contrast to the flux average method used by previous work, we employ the standard singular perturbation technique and a quasilinear method to obtain the time evolution equation of tearing modes. The result that the magnetic flux grows with time in a scaling as t2/3 demonstrates that nonlinear tearing modes with the hyper-resistivity effect alone have a weaker dependence on time than that of the corresponding resistive case.