Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process
-
Abstract
Coherence is a key resource in quantum information science. Exactly understanding and controlling the variation of coherence are vital for implementation in realistic quantum systems. Using P-representation of density matrix, we obtain the analytical solution of the master equation for the classical states in the non-Markovian process and investigate the coherent dynamics of Gaussian states. It is found that quantum coherence can be preserved in such a process if the coupling strength between system and environment exceeds a threshold value. We also discuss the characteristic function of the Gaussian states in the non-Markovian process, which provides an inevitable bridge for the control and operation of quantum coherence. -
-
References
[1] Girolami D 2014 Phys. Rev. Lett. 113 170401 doi: 10.1103/PhysRevLett.113.170401[2] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 doi: 10.1103/PhysRevLett.113.140401[3] Shao L H, Xi Z, Fan H and Li Y 2015 Phys. Rev. A 91 042120 doi: 10.1103/PhysRevA.91.042120[4] Du S, Bai Z and Guo Y 2015 Phys. Rev. A 91 052120 doi: 10.1103/PhysRevA.91.052120[5] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401 doi: 10.1103/PhysRevLett.114.210401[6] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112 doi: 10.1103/PhysRevA.92.022112[7] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403 doi: 10.1103/PhysRevLett.115.020403[8] Tan K C, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 94 022329 doi: 10.1103/PhysRevA.94.022329[9] Zhang Y R, Shao L H, Li Y M and Fan H 2016 Phys. Rev. A 93 012334 doi: 10.1103/PhysRevA.93.012334[10] Xu J 2016 Phys. Rev. A 93 032111 doi: 10.1103/PhysRevA.93.032111[11] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401 doi: 10.1103/PhysRevLett.103.210401[12] Ali M M, Lo P Y, Tu M W and Zhang W M 2015 Phys. Rev. A 92 062306 doi: 10.1103/PhysRevA.92.062306[13] Tan H T and Zhang W M 2011 Phys. Rev. A 83 032102 doi: 10.1103/PhysRevA.83.032102[14] Alipour S, Mehboudi M and Rezakhani A T 2014 Phys. Rev. Lett. 112 120405 doi: 10.1103/PhysRevLett.112.120405[15] Zhang W M, Lo P Y, Xiong H N, Tu M W and Nori F 2012 Phys. Rev. Lett. 109 170402 doi: 10.1103/PhysRevLett.109.170402[16] Torre G, Roga W and Illuminati F 2015 Phys. Rev. Lett. 115 070401 doi: 10.1103/PhysRevLett.115.070401[17] Anderson P W 1961 Phys. Rev. 124 41 doi: 10.1103/PhysRev.124.41[18] Fano U 1961 Phys. Rev. 124 1866 doi: 10.1103/PhysRev.124.1866[19] Cai C Y, Yang L P and Sun C P 2014 Phys. Rev. A 89 012128 doi: 10.1103/PhysRevA.89.012128[20] Caldeira A O and Legget A J 1983 Ann. Phys. N. Y. 149 374 doi: 10.1016/0003-49168390202-6[21] Tu M W and Zhang W M 2008 Phys. Rev. A 78 235311 doi: 10.1103/PhysRevB.78.235311[22] Jin J S, Tu M W, Zhang W M and Yan Y J 2010 New J. Phys. 12 083013 doi: 10.1088/1367-2630/12/8/083013[23] Schwinger J 1961 J. Math. Phys. N. Y. 2 407 doi: 10.1063/1.1703727[24] Kadanoff L P and Baym G 1962 Quantum Statistical Mechanics New York: Benjamin[25] Scully M O and Zubairy M S 2012 Quantum Optics Cambridge: Cambridge University vol 2[26] Carmichael H J 2002 Statistical Methods in Quantum Optical Berlin: Springer vol 1[27] Carmichael H J, Brecha R J, Raizen M G, Kimble H J and Rice P R 1989 Phys. Rev. A 40 5516 doi: 10.1103/PhysRevA.40.5516[28] Weedbrook C, Pirandola S, Garcia-PatrÓn R, Cerf N J, Ralph T C, Shapior J H and Lloyd S 2012 Rev. Mod. Phys. 84 621 doi: 10.1103/RevModPhys.84.621[29] Holevo A S, Sohma M and Hirota O 1999 Phys. Rev. A 59 1820 doi: 10.1103/PhysRevA.59.1820[30] Olivares S 2012 Eur. Phys. J. ST 203 3 doi: 10.1140/epjst/e2012-01532-4[31] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513 doi: 10.1103/RevModPhys.77.513 -
Related Articles
[1] Krishnendu Bhattacharyya, G. C. Layek. MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing [J]. Chin. Phys. Lett., 2011, 28(8): 084705. doi: 10.1088/0256-307X/28/8/084705 [2] T. Hayat, Liaqat Ali. Khan, R. Ellahi, S. Obaidat. Exact Solutions on MHD Flow Past an Accelerated Porous Plate in a Rotating Frame [J]. Chin. Phys. Lett., 2011, 28(5): 054701. doi: 10.1088/0256-307X/28/5/054701 [3] Krishnendu Bhattacharyya, Swati Mukhopadhyay, G. C. Layek. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate [J]. Chin. Phys. Lett., 2011, 28(2): 024701. doi: 10.1088/0256-307X/28/2/024701 [4] Choon Ki Ahn. A Passivity Based Synchronization for Chaotic Behavior in Nonlinear BlochEquations [J]. Chin. Phys. Lett., 2010, 27(1): 010503. doi: 10.1088/0256-307X/27/1/010503 [5] LI Bo-Tong, ZHENG Lian-Cun, ZHANG Xin-Xin. Multiple Solutions of Laminar Flow in Channels with a Transverse Magnetic Field [J]. Chin. Phys. Lett., 2009, 26(9): 094101. doi: 10.1088/0256-307X/26/9/094101 [6] Anuar Ishak, Roslinda Nazar, Ioan Pop. MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux [J]. Chin. Phys. Lett., 2009, 26(1): 014702. doi: 10.1088/0256-307X/26/1/014702 [7] WU Zheng-Wei, ZHANG Wen-Lu, LI Ding, YANG Wei-Hong. Effect of Magnetic Field and Equilibrium Flow on Rayleigh-Taylor Instability [J]. Chin. Phys. Lett., 2004, 21(10): 2001-2004. [8] CHEN Yin-Hua, WANG Ge, TAN Li-Wei. Nonlinear Inertial Alfvén Waves in Plasmas with Sheared Magnetic Field and Flow [J]. Chin. Phys. Lett., 2004, 21(5): 888-890. [9] CHEN Weizhong, WEI Rongjue, WANG Benren. Chaotic Behavior of Solitary Wave in Liquid [J]. Chin. Phys. Lett., 1995, 12(11): 677-680. [10] QIU Xiaoming (S.M.CHIU), WANG Xiaogang. A NEW STRANGE ATTRACTOR IN MHD FLOW IN SHEARED MAGNETIC FIELD [J]. Chin. Phys. Lett., 1986, 3(3): 105-108.