Processing math: 100%

Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 11405100, 11404377 and 11674360, the Natural Science Basic Research Plan of Shaanxi Province of China under Grant No 2015JM1032, and the Doctoral Research Fund of Shaanxi University of Science and Technology of China under Grant No 2018BJ-02.
  • Received Date: December 07, 2017
  • Published Date: May 31, 2018
  • Coherence is a key resource in quantum information science. Exactly understanding and controlling the variation of coherence are vital for implementation in realistic quantum systems. Using P-representation of density matrix, we obtain the analytical solution of the master equation for the classical states in the non-Markovian process and investigate the coherent dynamics of Gaussian states. It is found that quantum coherence can be preserved in such a process if the coupling strength between system and environment exceeds a threshold value. We also discuss the characteristic function of the Gaussian states in the non-Markovian process, which provides an inevitable bridge for the control and operation of quantum coherence.
  • Article Text

  • [1]
    Girolami D 2014 Phys. Rev. Lett. 113 170401 doi: 10.1103/PhysRevLett.113.170401

    CrossRef Google Scholar

    [2]
    Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 doi: 10.1103/PhysRevLett.113.140401

    CrossRef Google Scholar

    [3]
    Shao L H, Xi Z, Fan H and Li Y 2015 Phys. Rev. A 91 042120 doi: 10.1103/PhysRevA.91.042120

    CrossRef Google Scholar

    [4]
    Du S, Bai Z and Guo Y 2015 Phys. Rev. A 91 052120 doi: 10.1103/PhysRevA.91.052120

    CrossRef Google Scholar

    [5]
    Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401 doi: 10.1103/PhysRevLett.114.210401

    CrossRef Google Scholar

    [6]
    Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112 doi: 10.1103/PhysRevA.92.022112

    CrossRef Google Scholar

    [7]
    Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403 doi: 10.1103/PhysRevLett.115.020403

    CrossRef Google Scholar

    [8]
    Tan K C, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 94 022329 doi: 10.1103/PhysRevA.94.022329

    CrossRef Google Scholar

    [9]
    Zhang Y R, Shao L H, Li Y M and Fan H 2016 Phys. Rev. A 93 012334 doi: 10.1103/PhysRevA.93.012334

    CrossRef Google Scholar

    [10]
    Xu J 2016 Phys. Rev. A 93 032111 doi: 10.1103/PhysRevA.93.032111

    CrossRef Google Scholar

    [11]
    Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401 doi: 10.1103/PhysRevLett.103.210401

    CrossRef Google Scholar

    [12]
    Ali M M, Lo P Y, Tu M W and Zhang W M 2015 Phys. Rev. A 92 062306 doi: 10.1103/PhysRevA.92.062306

    CrossRef Google Scholar

    [13]
    Tan H T and Zhang W M 2011 Phys. Rev. A 83 032102 doi: 10.1103/PhysRevA.83.032102

    CrossRef Google Scholar

    [14]
    Alipour S, Mehboudi M and Rezakhani A T 2014 Phys. Rev. Lett. 112 120405 doi: 10.1103/PhysRevLett.112.120405

    CrossRef Google Scholar

    [15]
    Zhang W M, Lo P Y, Xiong H N, Tu M W and Nori F 2012 Phys. Rev. Lett. 109 170402 doi: 10.1103/PhysRevLett.109.170402

    CrossRef Google Scholar

    [16]
    Torre G, Roga W and Illuminati F 2015 Phys. Rev. Lett. 115 070401 doi: 10.1103/PhysRevLett.115.070401

    CrossRef Google Scholar

    [17]
    Anderson P W 1961 Phys. Rev. 124 41 doi: 10.1103/PhysRev.124.41

    CrossRef Google Scholar

    [18]
    Fano U 1961 Phys. Rev. 124 1866 doi: 10.1103/PhysRev.124.1866

    CrossRef Google Scholar

    [19]
    Cai C Y, Yang L P and Sun C P 2014 Phys. Rev. A 89 012128 doi: 10.1103/PhysRevA.89.012128

    CrossRef Google Scholar

    [20]
    Caldeira A O and Legget A J 1983 Ann. Phys. N. Y. 149 374 doi: 10.1016/0003-49168390202-6

    CrossRef Google Scholar

    [21]
    Tu M W and Zhang W M 2008 Phys. Rev. A 78 235311 doi: 10.1103/PhysRevB.78.235311

    CrossRef Google Scholar

    [22]
    Jin J S, Tu M W, Zhang W M and Yan Y J 2010 New J. Phys. 12 083013 doi: 10.1088/1367-2630/12/8/083013

    CrossRef Google Scholar

    [23]
    Schwinger J 1961 J. Math. Phys. N. Y. 2 407 doi: 10.1063/1.1703727

    CrossRef Google Scholar

    [24]
    Kadanoff L P and Baym G 1962 Quantum Statistical Mechanics New York: Benjamin

    Google Scholar

    [25]
    Scully M O and Zubairy M S 2012 Quantum Optics Cambridge: Cambridge University vol 2

    Google Scholar

    [26]
    Carmichael H J 2002 Statistical Methods in Quantum Optical Berlin: Springer vol 1

    Google Scholar

    [27]
    Carmichael H J, Brecha R J, Raizen M G, Kimble H J and Rice P R 1989 Phys. Rev. A 40 5516 doi: 10.1103/PhysRevA.40.5516

    CrossRef Google Scholar

    [28]
    Weedbrook C, Pirandola S, Garcia-PatrÓn R, Cerf N J, Ralph T C, Shapior J H and Lloyd S 2012 Rev. Mod. Phys. 84 621 doi: 10.1103/RevModPhys.84.621

    CrossRef Google Scholar

    [29]
    Holevo A S, Sohma M and Hirota O 1999 Phys. Rev. A 59 1820 doi: 10.1103/PhysRevA.59.1820

    CrossRef Google Scholar

    [30]
    Olivares S 2012 Eur. Phys. J. ST 203 3 doi: 10.1140/epjst/e2012-01532-4

    CrossRef Google Scholar

    [31]
    Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513 doi: 10.1103/RevModPhys.77.513

    CrossRef Google Scholar

  • Related Articles

    [1]Krishnendu Bhattacharyya, G. C. Layek. MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing [J]. Chin. Phys. Lett., 2011, 28(8): 084705. doi: 10.1088/0256-307X/28/8/084705
    [2]T. Hayat, Liaqat Ali. Khan, R. Ellahi, S. Obaidat. Exact Solutions on MHD Flow Past an Accelerated Porous Plate in a Rotating Frame [J]. Chin. Phys. Lett., 2011, 28(5): 054701. doi: 10.1088/0256-307X/28/5/054701
    [3]Krishnendu Bhattacharyya, Swati Mukhopadhyay, G. C. Layek. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate [J]. Chin. Phys. Lett., 2011, 28(2): 024701. doi: 10.1088/0256-307X/28/2/024701
    [4]Choon Ki Ahn. A Passivity Based Synchronization for Chaotic Behavior in Nonlinear BlochEquations [J]. Chin. Phys. Lett., 2010, 27(1): 010503. doi: 10.1088/0256-307X/27/1/010503
    [5]LI Bo-Tong, ZHENG Lian-Cun, ZHANG Xin-Xin. Multiple Solutions of Laminar Flow in Channels with a Transverse Magnetic Field [J]. Chin. Phys. Lett., 2009, 26(9): 094101. doi: 10.1088/0256-307X/26/9/094101
    [6]Anuar Ishak, Roslinda Nazar, Ioan Pop. MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux [J]. Chin. Phys. Lett., 2009, 26(1): 014702. doi: 10.1088/0256-307X/26/1/014702
    [7]WU Zheng-Wei, ZHANG Wen-Lu, LI Ding, YANG Wei-Hong. Effect of Magnetic Field and Equilibrium Flow on Rayleigh-Taylor Instability [J]. Chin. Phys. Lett., 2004, 21(10): 2001-2004.
    [8]CHEN Yin-Hua, WANG Ge, TAN Li-Wei. Nonlinear Inertial Alfvén Waves in Plasmas with Sheared Magnetic Field and Flow [J]. Chin. Phys. Lett., 2004, 21(5): 888-890.
    [9]CHEN Weizhong, WEI Rongjue, WANG Benren. Chaotic Behavior of Solitary Wave in Liquid [J]. Chin. Phys. Lett., 1995, 12(11): 677-680.
    [10]QIU Xiaoming (S.M.CHIU), WANG Xiaogang. A NEW STRANGE ATTRACTOR IN MHD FLOW IN SHEARED MAGNETIC FIELD [J]. Chin. Phys. Lett., 1986, 3(3): 105-108.

Catalog

    Article views (299) PDF downloads (436) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return