Demonstration of a Shock-Timing Experiment in a CH Layer at the ShenGuang III Laser Facility
-
Abstract
Shock-timing experiments are indispensable to inertial confinement fusion mainly because the timing of multiple shock waves is crucial to understanding the processes of laser irradiation of targets. Investigations into shock waves driven by a two-step radiation pulse in polystyrene (CH) capsule targets are experimentally conducted at the ShenGuang III laser facility. Differing from the traditional shock-timing implementation in which one shock wave could catch up with another one in solid CH, in this experiment, the second shock front in a rarefaction CH layer is observed through velocity interferometry. This second shock could also be made to converge with rarefaction waves within only a few micrometers of the CH capsule by designing the two-shock coalescence time. A shock-timing diagnostic technique to tune the multi-shock convergence in the CH capsule can thereby be achieved. The experimental results in the CH layer are quasi-quantitatively interpreted using streamlines simulated with the Multi-1D program. The experimental results are expected to offer important information for target structure and laser pulse design, both of which are important for realizing inertial confinement fusion. -
-
References
[1] Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R and Armstrong W J 2004 Rev. Sci. Instrum. 75 4916 doi: 10.1063/1.1807008[2] Malone R M, Celeste J R, Celliers P M, Frogget B C, Guyton R L, Kaufman M I, Lee T L, Acgowan B J, Ng E W, Reinbachs I P and Robinson R 2005 UCRL-CONF 213575[3] Celliers P M, Collins G W, Hicks D G, Koenig M, Henry E, Benuzzi-Mounaix A, Batani D, Bradley D K, Da Silva L B, Wallace R J, Moon S J, Eggert J H, Lee K K M, Benedetti L R and Jeanloz R 2004 Phys. Plasmas 11 L41 doi: 10.1063/1.1758944[4] Boehly T R, Munro D, Celliers P M, Olson R E, Hicks D G, Goncharov V N, Collins G W, Robey H F, Hu S X, Morozas J A, Sangster T C, Landen O L and Meyerhofer D D 2009 Phys. Plasmas 16 056302 doi: 10.1063/1.3078422[5] Robey H F, Boehly T R, Olson R E, Nikroo A, Celliers P M, Landen O L and Meyerhofer D D 2010 Phys. Plasmas 17 012703 doi: 10.1063/1.3276154[6] Celliers P M, Collins G W, Da Silva L B, Gold D M, Cauble R, Wallance R J, Foord M E and Hammel B A 2000 Phys. Rev. Lett. 84 5564 doi: 10.1103/PhysRevLett.84.5564[7] Hicks D G, Boehly T R, Celliers P M, Eggert J H, Vianello E, Meyerhofer D D and Collins G W 2005 Phys. Plasmas 12 082702 doi: 10.1063/1.2009528[8] Qi Z, Chen D H, Lai G Y, Guo L F, Li Y Z, Luan Y P, Li D M and Zhou P Z 2014 High Power Laser Part. Beams 26 5[9] Zheng W G, Wei X F, Zhu Q H, Jing F, Hu D X, Zhang X M, Su J Q, Zheng K X, Wang C C, Yuan X D, Zhou H, Chen B, Wang J, Ma P, Xu Q, Yang L M, Dai W J, Zhou W, Wang F, Xu D P, Xie X D, Feng B, Peng Z T, Guo L F, Chen Y B, Zhang X J, Liu L Q, Lin D H, Dang Z, Xiang Y, Chen X D and Zhang W Y 2015 High Power Laser Part. Beams 28 1[10] Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H and Ding Y K 2010 Acta Opt. Sin. 30 5[11] Theobald W, Miller J E, Boehly T R, Vianello E, Meyerhofer D D, Sangster T C, Eggert J and Celliers P M 2006 Phys. Plasmas 13 122702 doi: 10.1063/1.2397581[12] He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C and Zhang J 2009 Acta Phys. Sin. 58 1 in Chinese[13] Zhang Y, Li Y T, Zheng Z Y, Liu F, Zhong J Y, Lin X X, Lu X and Zhang J 2007 Chin. Phys. B 16 12[14] Olson R E, Bradley D K, Rochau G A, Collins G W, Leeper R J and Suter L J 2006 Rev. Sci. Instrum. 77 10E523 doi: 10.1063/1.2336458[15] Tan H 2007 Introduction to Experimental Shock-wave Physics Beijing: National Defence Industry Press[16] Jing L F, Jiang S E, Yang D, Li H, Zhang L, Lin Z W, Li L L, Kuang L Y, Huang Y B and Ding Y K 2015 Phys. Plasmas 22 022709 doi: 10.1063/1.4908276 -
Related Articles
[1] Kuetche Kamgang Victor, Gambo Betchewe, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Miscellaneous Rotating Solitary Waves to a Coupled Dispersionless System [J]. Chin. Phys. Lett., 2009, 26(9): 090505. doi: 10.1088/0256-307X/26/9/090505 [2] DING Jian, LI Yi, WANG Shui. Numerical Simulation of Solitary Kinetic Alfvén Waves [J]. Chin. Phys. Lett., 2008, 25(7): 2554-2557. [3] ZHANG Bi-Xing, CUI Han-Yin, XIAO Bo-Xun, ZHANG Cheng-Guang. Guided Waves in a Multi-Layered Cylindrical Elastic Solid Medium [J]. Chin. Phys. Lett., 2007, 24(10): 2883-2886. [4] WEN Zhen-Ying, ZHAO Hong, WANG Shun-Jin, ZHANG Xiu-Ming. Effect of Nonlinearity on Scattering Dynamics of Solitary Waves [J]. Chin. Phys. Lett., 2006, 23(8): 2034-2037. [5] WANG Yun-Liang, ZHOU Zhong-Xiang, JIANG Xiang-Qian, YUAN Cheng-Xun, WANG Hai-Feng, ZHANG Hai-Feng, HOU Chun-Feng, JIANG Yong-Yuan, SUN Xiu-Dong, QIN Ru-Hu. Relativistic Electromagnetic Solitary Wave in a Cylindrical Magnetized Plasma [J]. Chin. Phys. Lett., 2006, 23(3): 664-667. [6] ZHANG Ying, GAO Ben-Qing. Propagation of Cylindrical Waves in Media of Time-Dependent Permittivity [J]. Chin. Phys. Lett., 2005, 22(2): 446-449. [7] LIU Hong, HE Xian-Tu, LOU Sen-Yue. Quintic Nonlinearity Induced Solitary Waves in Plasma Physics [J]. Chin. Phys. Lett., 2002, 19(1): 87-90. [8] WANG Jun-yi, WANG Wei, WANG Ben-ren, WEI Rong-jue. Effect of the Boundary on the Dynamics of Solitary Waves [J]. Chin. Phys. Lett., 1996, 13(7): 481-484. [9] ZHOU Xianchu, CUI Hongnong. New Parameter Region for Non-propagating Solitary Waves [J]. Chin. Phys. Lett., 1991, 8(12): 629-632. [10] YAN Jiaren, ZOU Fengwu. NON-PROPAGATING SOLITARY WAVES WITHIN THE FLUID [J]. Chin. Phys. Lett., 1989, 6(11): 499-502.