Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by Laser Interference Lithography

Funds: Supported by the Scientific Equipment Research Program of Chinese Academy of Sciences under Grant No 2014Y4201449.
  • Received Date: March 18, 2018
  • Published Date: April 30, 2018
  • We report the fabrication of 4-inch nano patterned wafer by two-beam laser interference lithography and analyze the uniformity in detail. The profile of the dots array with a period of 800 nm divided into five regions is characterized by a scanning electron microscope. The average size in each region ranges from 270 nm to 320 nm, and the deviation is almost 4%, which is approaching the applicable value of 3% in the industrial process. We simulate the two-beam laser interference lithography system with MATLAB software and then calculate the distribution of light intensity around the 4 inch area. The experimental data fit very well with the calculated results. Analysis of the experimental data and calculated data indicates that laser beam quality and space filter play important roles in achieving a periodical nanoscale pattern with high uniformity and large area. There is the potential to obtain more practical applications.
  • Article Text

  • [1]
    Katchalski T, Teitelbaum E and Friesem A A 2004 Appl. Phys. Lett. 84 472 doi: 10.1063/1.1644330

    CrossRef Google Scholar

    [2]
    Rosenblatt D, Sharon A and Friesem A A 1997 IEEE J. Quantum Electron. 33 2038 doi: 10.1109/3.641320

    CrossRef Google Scholar

    [3]
    Lee H, Hong S and Yang K 2006 Appl. Phys. Lett. 88 143112 doi: 10.1063/1.2193653

    CrossRef Google Scholar

    [4]
    Yang M, Liu L H, Ning L H et al. 2016 Chin. Phys. B 25 017401 doi: 10.1088/1674-1056/25/1/017401

    CrossRef Google Scholar

    [5]
    Gao MY, Zhan X H, Chen F et al. 2017 Mod. Phys. Lett. B 31 1740002 doi: 10.1142/S0217984917400024

    CrossRef Google Scholar

    [6]
    Deubel M, Freymann G V, Wegener M, Pereira S et al. 2004 Nat. Mater. 3 444 doi: 10.1038/nmat1155

    CrossRef Google Scholar

    [7]
    Muralt P 2000 J. Micromech. Microeng. 10 136 doi: 10.1088/0960-1317/10/2/307

    CrossRef Google Scholar

    [8]
    Dimitrakopoulos C D and Malenfant P R L 3.0.CO;2-9">2002 Adv. Mater. 14 99 doi: 10.1002/1521-40952002011614:2<99::AID-ADMA99>3.0.CO;2-9

    CrossRef 2002 Adv. Mater. 14 99" target="_blank">Google Scholar

    [9]
    Li A P, Müller F, Birner A, Nielsch K et al. 1998 J. Appl. Phys. 84 6023 doi: 10.1063/1.368911

    CrossRef Google Scholar

    [10]
    Zhang Y J, Lu R, Liu Q S et al. 2003 Thin Solid Films 437 1 doi: 10.1016/S0040-60900200785-X

    CrossRef Google Scholar

    [11]
    Zhou Y, Zhang Z J and Yue Y 2005 Mater. Lett. 59 3375 doi: 10.1016/j.matlet.2005.04.063

    CrossRef Google Scholar

    [12]
    Fischer H and Martin O J F 2008 Opt. Express 16 9144 doi: 10.1364/OE.16.009144

    CrossRef Google Scholar

    [13]
    Nakamura, Shuji 2000 Introduction to nitride semiconductor blue lasers and light emitting diodes Taylor & Francis

    Google Scholar

    [14]
    Gao H Y, Yan F W, Zhang Y et al. 2008 J. Appl. Phys. 103 014314 doi: 10.1063/1.2830981

    CrossRef Google Scholar

    [15]
    Dong P, Yan J C, Wang J X et al. 2013 Appl. Phys. Lett. 102 241113 doi: 10.1063/1.4812237

    CrossRef Google Scholar

    [16]
    Cheng Y, Wang L C et al. 2013 ECS Solid State Lett. 2 Q93 doi: 10.1149/2.007311ssl

    CrossRef Google Scholar

    [17]
    Zhong Z Y, Chen P X, Jiang Z M et al. 2008 Appl. Phys. Lett. 93 043106 doi: 10.1063/1.2965484

    CrossRef Google Scholar

    [18]
    Qiao L, He M et al. 2017 J. Nanoelectron. Optoelectron. 12 674 doi: 10.1166/jno.2017.2087

    CrossRef Google Scholar

    [19]
    Li K L, An J M, Zhang J S et al. 2016 Chin. Phys. B 25 0124209 doi: 10.1088/1674-1056/25/12/124209

    CrossRef Google Scholar

    [20]
    Zhang Y L, Chen Q D, Xia H et al. 2010 Nano Today 5 5 doi: 10.1016/j.nantod.2009.12.006

    CrossRef Google Scholar

    [21]
    Takei S 2010 Appl. Phys. Express 3 025202 doi: 10.1143/APEX.3.025202

    CrossRef Google Scholar

    [22]
    Guerfi Y, Carcenac F and Larrieu G 2013 Microelectron. Eng. 110 173 doi: 10.1016/j.mee.2013.03.055

    CrossRef Google Scholar

    [23]
    Xie Q, Hong M H, Tan H L et al. 2008 J. Alloys Compd. 449 1 doi: 10.1016/j.jallcom.2006.03.105

    CrossRef Google Scholar

    [24]
    Kravchenko A, Shevchenko A, Ovchinnikov V et al. 2011 Advanced Mater. 23 4174 doi: 10.1002/adma.201101888

    CrossRef Google Scholar

    [25]
    Das N, Karar A, Vasiliev M et al. 2011 Opt. Commun. 284 1694 doi: 10.1016/j.optcom.2010.11.065

    CrossRef Google Scholar

    [26]
    Sidharthan R and Murukeshan V M 2012 Laser Phys. Lett. 9 691 doi: 10.7452/lapl.201210056

    CrossRef Google Scholar

    [27]
    Jinnil C, Chung M H et al. 2011 J. Nanosci. Nanotechnol. 11 778 doi: 10.1166/jnn.2011.3281

    CrossRef Google Scholar

    [28]
    Mao W D, Wathuthanthri I and Choi C H 2011 Opt. Lett. 36 3176 doi: 10.1364/OL.36.003176

    CrossRef Google Scholar

    [29]
    Dai L G, Yang F, Yue Gen et al. 2014 Proc. SPIE 9277 927715 doi: 10.1117/12.2072991

    CrossRef Google Scholar

    [30]
    Zhang Z A, Dong L T, Ding Y F et al. 2017 Opt. Express 25 29135 doi: 10.1364/OE.25.029135

    CrossRef Google Scholar

    [31]
    Bagal A and Chang C H 2013 Opt. Lett. 38 2531 doi: 10.1364/OL.38.002531

    CrossRef Google Scholar

Catalog

    Article views (115) PDF downloads (398) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return