Resistivity and Radio-Frequency Properties of Two-Generation Trap-Rich Silicon-on-Insulator Substrates

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 61376021 and 61674159, and the Program of Shanghai Academic/Technology Research Leader under Grant No 17XD1424500.
  • Received Date: December 28, 2017
  • Published Date: March 31, 2018
  • Crystal morphologies and resistivity of polysilicon trap-rich layers of two-generation trap-rich silicon-on-insulator (TR-SOI) substrates are studied. It is found that the resistivity of the trap-rich layer of generation 2 (TR-G2) is higher than that of generation 1 (TR-G1), although the crystal morphologies of the trap rich layers are the same. In addition, the rf performance of two-generation TR-SOI substrates is investigated by coplanar waveguide lines and inductors. The results show that both the rf loss and the second harmonic distortion of TR-G2 are smaller than those of TR-G1. These results can be attributed to the higher resistivity values of both the trap-rich layer and the high-resistivity silicon (HR-Si) substrate of TR-G2. Moreover, the rf performance of the TR-SOI substrate with thicker buried oxide is slightly better. The second harmonics of various TR-SOI substrates are simulated and evaluated with the harmonic quality factor model as well. It can be predicted that the TR-SOI substrate will see further improvement in rf performance if the resistivities of both the trap-rich layer and HR-Si substrate increase.
  • Article Text

  • [1]
    Delatte P, Picun G, Demeus L, Simon P and Flandre D 2005 31st European Solid-State Circuits Conference Grenoble, France 12–16 September 2005 p 395

    Google Scholar

    [2]
    Tinella C, Richard O, Cathelin A, Reaute F, Majcherczak S, Blanchet F and Belot D 2006 Topical Meeting Silicon Monolithic Integrated Circuits RF Syst. San Diego CA, USA 18–20 January 2006 p 58

    Google Scholar

    [3]
    Wu Y, Gamble H S, Armstrong B M, Fusco V F and Stewart J 1991 IEEE Microwave Guided Wave Lett. 1 10 doi: 10.1109/75.80676

    CrossRef Google Scholar

    [4]
    Schollhorn C, Zhao W, Morschbach M and Kasper E 2003 IEEE Trans. Electron Devices 50 740 doi: 10.1109/TED.2003.810466

    CrossRef Google Scholar

    [5]
    Chan K T, Chin A, Lin Y D, Chang C Y, Zhu C X, Li M F, Kwong D L, McAlister S, Duh D S and Lin W J 2003 IEEE Microwave Wireless Compon. Lett. 13 487 doi: 10.1109/LMWC.2003.817146

    CrossRef Google Scholar

    [6]
    Neve C R, Lederer D and Raskin J P 2007 Annu. Workshop IEEE/LEOS Benelux Chapter Brussels, Belgium 25 May 2007 p 251

    Google Scholar

    [7]
    Makioka S, Anda Y, Miyatsuji K and Ueda D 2001 IEEE Trans. Electron Devices 48 1510 doi: 10.1109/16.936499

    CrossRef Google Scholar

    [8]
    Jansman A B M, van Beek J T M, van Delden M H W M, Kemmeren A L A M, den Dekker A and Widdershoven F P 33rd Conference on European Solid-State Device Research Estoril, Portugal 16–18 September 2003 p 3

    Google Scholar

    [9]
    Lederer D and Raskin J P 2005 Solid-State Electron. 49 491 doi: 10.1016/j.sse.2004.12.003

    CrossRef Google Scholar

    [10]
    Gamble H S, Armstrong B M, Mitchell S J N, Wu Y, Fusco V F and Stewart J A C 1999 IEEE Microwave Guided Wave Lett. 9 395 doi: 10.1109/75.798027

    CrossRef Google Scholar

    [11]
    Lederer D and Raskin J P 2005 IEEE Electron Device Lett. 26 805 doi: 10.1109/LED.2005.857730

    CrossRef Google Scholar

    [12]
    Yang S, Hu Z, Buchanan N B, Fusco V F, Stewart J A C, Wu Y, Armstrong B M, Armstrong G A and Gamble H S 1998 IEEE Trans. Microwave Theory Tech. 46 623 doi: 10.1109/22.668674

    CrossRef Google Scholar

    [13]
    Kamins T 1998 Polycrystalline Silicon For Integrated Circuit Applications Boston: Springer chap 1

    Google Scholar

    [14]
    https://www.soitec.com/

    Google Scholar

    [15]
    Desbonnets E and Didier C 2015 Microwave J. 58 64

    Google Scholar

    [16]
    Zhu L, Chang Y W, Gao N, Su X, Dong Y M, Fei L, Wei X and Wang X 2018 ECS J. Solid State Sci. Technol. 7 P35 doi: 10.1149/2.0061802jss

    CrossRef Google Scholar

    [17]
    Zhu L, Liu S K, Allibert F, Desbonnets E, Radu I, Zhu X E and Lu Y M 2016 Int. Symp. VLSI Technol. Syst. Appl. Hsinchu, China 25–27 April 2016 p 1

    Google Scholar

    [18]
    Mazur R G and Dickey D H 1966 J. Electrochem. Soc. 113 255 doi: 10.1149/1.2423927

    CrossRef Google Scholar

    [19]
    Neve C R, Alia K B, Malaquin C, Allibert F, Desbonnets E, Bertr, I, Van Den Daele W and Raskin J P 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems Austin TX, USA 21–23 January 2013 p 15

    Google Scholar

    [20]
    Seto J Y W 1975 J. Appl. Phys. 46 5247 doi: 10.1063/1.321593

    CrossRef Google Scholar

    [21]
    Fripp A L and Slack L H 1973 J. Electrochem. Soc. 120 145 doi: 10.1149/1.2403390

    CrossRef Google Scholar

    [22]
    Neve C R, Roda C and Raskin J P 2012 IEEE Trans. Electron Devices 59 924 doi: 10.1109/TED.2012.2183598

    CrossRef Google Scholar

  • Related Articles

    [1]HAO Xiao-Peng, ZHOU Chun-Lan, WANG Bao-Yi, WEI Long. Defects in Si-Rich SiO2 Films Prepared by Radio-Frequency Magnetron Co-sputtering Using Variable Energy Positron Annihilation Spectroscopy [J]. Chin. Phys. Lett., 2009, 26(4): 046101. doi: 10.1088/0256-307X/26/4/046101
    [2]DAI Zhong-Ling, LIU Chuan-Sheng, WANG You-Nian. Comparison between Dual Radio Frequency- and Pulse-Driven Sheath near Insulating Substrates [J]. Chin. Phys. Lett., 2008, 25(2): 632-635.
    [3]WAN Jin-Yin, QU Qiu-Zhi, ZHOU Zi-Chao, LI Xiao-Lin, WANG Yu-Zhu, LIU Liang. Surface Planar Ion Chip for Linear Radio-Frequency Paul Traps [J]. Chin. Phys. Lett., 2007, 24(5): 1238-1241.
    [4]JING Shi-Wei, LIU Yi-Chun, LIANG Yu, MA Jian-Gang, LU You-Ming, SHEN De-Zhen, ZHANG Ji-Ying, FAN Xi-Wu, MU Ri-Xiang. Compositional and Structural Properties of TiO2-xNx Thin Films Deposited by Radio-Frequency Magnetron Sputtering [J]. Chin. Phys. Lett., 2006, 23(3): 682-685.
    [5]WANG Li-Hong, DAI Zhong-Ling, WANG You-Nian. Investigation of Dual Radio-Frequency Driven Sheaths and Ion Energy Distributions Bombarding an Insulating Substrate [J]. Chin. Phys. Lett., 2006, 23(3): 668-671.
    [6]WU Li-Jin, SHI Ting-Yun, GAO Ke-Lin. Effect of Laser Cooling on Frequency Standard of Single Ca+ Ion Trapped in a Radio-Frequency Paul Trap [J]. Chin. Phys. Lett., 2006, 23(1): 83-86.
    [7]FANG Qing, CHEN Peng, XIN Hong-Li, WANG Chun-Xia, LI Fang, LIU Yu-Liang. Low Power-Consumption and High Response Frequency Thermo-Optic Variable Optical Attenuators Based on Silicon-on-Insulator Materials [J]. Chin. Phys. Lett., 2005, 22(6): 1452-1455.
    [8]ZHANG Hai-Chao, ZHANG Peng-Fei, XU Xin-Ping, HAN Jiu-Rong, WANG Yu-Zhu. Trapping of Neutral Atoms with a Radio-Frequency Field [J]. Chin. Phys. Lett., 2005, 22(1): 83-86.
    [9]MEI Zeng-Xia, DU Xiao-Long, ZENG Zhao-Quan, GUO Yang, WANG Jian, JIA Jin-Feng, XUE Qi-Kun. Two-Step Growth of MgO Films on Sapphire (0001) Substrates by Radio Frequency Plasma-Assisted Molecular Beam Epitaxy [J]. Chin. Phys. Lett., 2004, 21(2): 410-413.
    [10]HUANG Shi-Yong, ZHANG Li-De, LI Guang-Hai, DAI Zhen-Hong, ZHU Xiao-Guang, QU Feng-Qi, FU Sheng-Qi, ZHONG Yu-Rong, MIAO Y. Effect of Substrates on CuInSe2 Nanoparticle Thin Films by Radio Frequency Reactive Sputtering [J]. Chin. Phys. Lett., 2002, 19(8): 1199-1202.

Catalog

    Article views (265) PDF downloads (1398) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return