An Al0.25Ga0.75N/GaN Lateral Field Emission Device with a Nano Void Channel
-
Abstract
We report an Al0.25Ga0.75N/GaN based lateral field emission device with a nanometer scale void channel. A ∼45 nm void channel is obtained by etching out the SiO2 sacrificial dielectric layer between the semiconductor emitter and the metal collector. Under an atmospheric environment instead of vacuum conditions, the GaN-based field emission device shows a low turn-on voltage of 2.3 V, a high emission current of ∼40 μA (line current density 2.3 mA/cm) at a collector bias VC=3 V, and a low reverse leakage of 3 nA at VC=−3 V. These characteristics are attributed to the nanometer scale void channel as well as the high density of two-dimensional electron gas in the AlGaN/GaN heterojunction. This type of device may have potential applications in high frequency microelectronics or nanoelectronics. -
-
References
[1] Koomey J, Berard S, Sanchez M and Wong H 2011 IEEE Ann. Hist. Comput. 33 46 doi: 10.1109/MAHC.2010.28[2] Xu N S and Huq S E 2005 Mater. Sci. Eng. R 48 47 doi: 10.1016/j.mser.2004.12.001[3] Tsai T Y, Chang S J, Weng W Y, Li S G, Liu S, Hsu C L, Hsueh H T and Hsueh T J 2013 IEEE Electron Device Lett. 34 553 doi: 10.1109/LED.2013.2247558[4] Li G W, Song B, Ganguly S, Zhu M D, Wang R H, Yan X D, Verma J, Protasenko V, Xing H G and Jena D 2014 Appl. Phys. Lett. 104 193506 doi: 10.1063/1.4875916[5] Zhao W, Wang R Z, Song X M, Wang H, Wang B, Yan H and Chu P K 2011 Appl. Phys. Lett. 98 152110 doi: 10.1063/1.3581043[6] Dinh D V, Kang S M, Yang J H, Kim S W and Yoon D H 2009 J. Cryst. Growth 311 495 doi: 10.1016/j.jcrysgro.2008.09.033[7] Choi Y, Michan M, Johnson J L, Naieni A K, Ural A and Nojeh A 2012 J. Appl. Phys. 111 044308 doi: 10.1063/1.3685903[8] Park J H, Lee H I, Tae H S, Huh J S and Lee J H 1997 IEEE Trans. Electron Devices 44 1018 doi: 10.1109/16.585560[9] Subramanian K, Kang W P and Davidson J L 2008 IEEE Electron Device Lett. 29 1259 doi: 10.1109/LED.2008.2005516[10] Srisonphan S, Jung Y S and Kim H K 2012 Nat. Nanotechnol. 7 504 doi: 10.1038/nnano.2012.107[11] Gaska R, Shur M S, Bykhovski A D, Orlov A O and Snider G L 1999 Appl. Phys. Lett. 74 287 doi: 10.1063/1.123001[12] Cui L, Wang Q, Wang X L, Xiao H L, Wang C M, Jiang L J, Feng C, Yin H B, Gong J M, Li B Q and Wang Z G 2015 Chin. Phys. Lett. 32 058501 doi: 10.1088/0256-307X/32/5/058501[13] Wang H, Wang N, Jiang L L, Lin X P, Zhao H Y and Yu H Y 2017 Chin. Phys. B 26 047305 doi: 10.1088/1674-1056/26/4/047305[14] Fowler R H and Nordheim L 1928 Proc. R. Soc. London Ser. A 119 173 doi: 10.1098/rspa.1928.0091[15] Han J W, Oh J S and Meyyappan M 2012 Appl. Phys. Lett. 100 213505 doi: 10.1063/1.4717751[16] Stoner B R and Glass J T 2012 Nat. Nanotechnol. 7 485 doi: 10.1038/nnano.2012.130[17] Higashiwaki M, Chowdhury S, Miao M S, Swenson B L, van de Walle C G and Mishra U K 2010 J. Appl. Phys. 108 063719 doi: 10.1063/1.3481412[18] Higashiwaki M, Chowdhury S, Swenson B L and Mishra U K 2010 Appl. Phys. Lett. 97 222104 doi: 10.1063/1.3522649[19] Goyal N, Iniguez B and Fjeldly T A 2012 Appl. Phys. Lett. 101 103505 doi: 10.1063/1.4751859