Global Statistical Study of Ionospheric Waves Based on COSMIC GPS Radio Occultation Data
-
Abstract
Extracting and parameterizing ionospheric waves globally and statistically is a longstanding problem. Based on the multichannel maximum entropy method (MMEM) used for studying ionospheric waves by previous work, we calculate the parameters of ionospheric waves by applying the MMEM to numerously temporally approximate and spatially close global-positioning-system radio occultation total electron content profile triples provided by the unique clustered satellites flight between years 2006 and 2007 right after the constellation observing system for meteorology, ionosphere, and climate (COSMIC) mission launch. The results show that the amplitude of ionospheric waves increases at the low and high latitudes (0.15 TECU) and decreases in the mid-latitudes (0.05 TECU). The vertical wavelength of the ionospheric waves increases in the mid-latitudes (e.g., 50 km at altitudes of 200–250 km) and decreases at the low and high latitudes (e.g., 35 km at altitudes of 200–250 km). The horizontal wavelength shows a similar result (e.g., 1400 km in the mid-latitudes and 800 km at the low and high latitudes). -
-
References
[1] Rice D D et al. 1988 Radio Sci. 23 919 doi: 10.1029/RS023i006p00919[2] Bristow W A, Greenwald R A and Samson J C 1994 J. Geophys. Res. 99 319 doi: 10.1029/93JA01470[3] Hernández M et al. 2006 J. Geophys. Res. 111 11[4] Galushko V G et al. 1998 Ann. Geophys. 16 821 doi: 10.1007/s00585-998-0821-3[5] Morf M et al. 1978 IEEE Trans. Geosci. Electron. 16 85 doi: 10.1109/TGE.1978.294569[6] Preusse P et al. 2002 J. Geophys. Res. 107 8178 doi: 10.1029/2001JD000699[7] Ern M 2004 J. Geophys. Res. 109 D20103 doi: 10.1029/2004JD004752[8] Ding F et al. 2011 J. Geophys. Res. 116 A09327 doi: 10.1029/2011JA016545[9] Zeng X Y et al. 2017 Sci. Chin. Earth Sci. 60 188 doi: 10.1007/s11430-016-0065-6[10] Schreiner W et al. 2007 Geophys. Res. Lett. 34 L04808 doi: 10.1029/2006GL027557[11] de la Torre A et al. 2014 J. Geophys. Res. 119 2046 doi: 10.1002/2013JA018870[12] Wright C J, Rivas M B and Gille J C 2011 Atmos. Meas. Tech. 4 1581 doi: 10.5194/amt-4-1581-2011[13] Alexander M J 2015 Geophys. Res. Lett. 42 6860 doi: 10.1002/2015GL065234[14] Schmidt T, Alexander P and de la Torre A 2016 J. Geophys. Res. 121 4443 doi: 10.1002/2015JD024135[15] Romero-Hernandez E et al. 2017 Adv. Space Res. 60 1838 doi: 10.1016/j.asr.2017.06.042[16] Faber A et al. 2013 Atmos. Meas. Tech. 6 3169 doi: 10.5194/amt-6-3169-2013[17] Vadas S L 2007 J. Geophys. Res. 112 305 doi: 10.1029/2006JA011845[18] Balthazor R L and Moffett R J 1997 Ann. Geophys. 15 1048 doi: 10.1007/s00585-997-1048-4[19] Kubota M et al. 2000 Geophys. Res. Lett. 27 4037 doi: 10.1029/2000GL011858[20] Tsugawa T 2004 J. Geophys. Res. 109 A06302 doi: 10.1029/2003JA010302[21] Zhang D H et al. 2002 Chin. J. Geophys. 45 469 doi: 10.1002/cjg2.260[22] Kubota M, Fukunishi H and Okano S 2001 Earth Planets Space 53 741 doi: 10.1186/BF03352402[23] Hocke K and Schlegel K 1996 Ann. Geophysicae 14 917[24] Kirchengast G, Hocke K and Schlegel K 1995 Radio Sci. 30 1551 doi: 10.1029/95RS02080 -
Related Articles
[1] DU Yan-Dong, HAN Wei-Hua, YAN Wei, YANG Fu-Hua. Impact of CHF3 Plasma Treatment on AlGaN/GaN HEMTs Identified by Low-Temperature Measurement [J]. Chin. Phys. Lett., 2014, 31(4): 048501. doi: 10.1088/0256-307X/31/4/048501 [2] WANG Yong, YU Nai-Sen, LI Ming, LAU Kei-May. Improved AlGaN/GaN HEMTs Grown on Si Substrates Using Stacked AlGaN/AlN Interlayer by MOCVD [J]. Chin. Phys. Lett., 2011, 28(5): 057102. doi: 10.1088/0256-307X/28/5/057102 [3] ZHANG Guang-Chen, FENG Shi-Wei, HU Pei-Feng, ZHAO Yan, GUO Chun-Sheng, XU Yang, CHEN Tang-Sheng, JIANG Yi-Jian. Channel Temperature Measurement of AlGaN/GaN HEMTs by Forward Schottky Characteristics2010- [J]. Chin. Phys. Lett., 2011, 28(1): 017201. doi: 10.1088/0256-307X/28/1/017201 [4] MAO Wei, ZHANG Jin-Cheng, XUE Jun-Shuai, HAO Yao, MA Xiao-Hua, WANG Chong, LIU Hong-Xia, XU Sheng-Rui, YANG Lin-An, BI Zhi-Wei, LIANG Xiao-Zhen, ZHANG Jin-Feng, KUANG Xian-Wei. Fabrication and Characteristics of AlInN/AlN/GaN MOS-HEMTs with Ultra-Thin Atomic Layer Deposited Al2O3 Gate Dielectric [J]. Chin. Phys. Lett., 2010, 27(12): 128501. doi: 10.1088/0256-307X/27/12/128501 [5] HU Gui-Zhou, YANG Ling, YANG Li-Yuan, QUAN Si, JIANG Shou-Gao, MA Ji-Gang, MA Xiao-Hua, HAO Yue. Characteristics in AlN/AlGaN/GaN Multilayer-Structured High-Electron-Mobility Transistors [J]. Chin. Phys. Lett., 2010, 27(8): 087302. doi: 10.1088/0256-307X/27/8/087302 [6] FENG Chun, WANG Xiao-Liang, YANG Cui-Bai, XIAO Hong-Ling, ZHANG Ming-Lan, JIANG Li-Juan, TANG Jian, HU Guo-Xin, WANG Jun-Xi, WANG Zhan-Guo. Effect of CO on Characteristics of AlGaN/GaN Schottky Diode [J]. Chin. Phys. Lett., 2008, 25(8): 3025-3027. [7] MU Sen, YU Tong-Jun, HUANG Liu-Bing, JIA Chuan-Yu, PAN Yao-Bo, YANG Zhi-Jian, CHEN Zhi-Zhong, QIN Zhi-Xin, ZHANG Guo-Yi. Electrical Characteristics of InGaN/AlGaN and InGaN/GaN MQW Near UV-LEDs [J]. Chin. Phys. Lett., 2007, 24(11): 3245-3248. [8] HAO Zhi-Biao, GUO Tian-Yi, ZHANG Li-Chong, LUO Yi. AlGaN/GaN HEMTs with an Insulated Gate Fabricated by Inductively Coupled Plasma Oxidization [J]. Chin. Phys. Lett., 2006, 23(2): 497-499. [9] SHAO Jia-Ping, HAN Yan-Jun, WANG Lai, JIANG Yang, XI Guang-Yi, LI Hong-Tao, ZHAO Wei, LUO Yi. Improved Surface Characteristics and Contact Performance of Epitaxial p-AlGaN by a Chemical Treatment Process [J]. Chin. Phys. Lett., 2006, 23(2): 432-435. [10] WEN Bo, JIANG Ruo-Lian, ZHOU Jian-Jun, JI Xiao-Li, LIANG Ling-Yan, KONG Yue-Chan, SHEN Bo, ZHANG Rong, ZHENG You-Dou. Influence of Polarization Effects on the Energy Band of AlGaN/GaN/AlGaN Heterostructures [J]. Chin. Phys. Lett., 2004, 21(4): 720-722.