Global Statistical Study of Ionospheric Waves Based on COSMIC GPS Radio Occultation Data

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 41774158, 41474129 and 41704148, the Chinese Meridian Project, and the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No 2011324.
  • Received Date: May 16, 2018
  • Published Date: September 30, 2018
  • Extracting and parameterizing ionospheric waves globally and statistically is a longstanding problem. Based on the multichannel maximum entropy method (MMEM) used for studying ionospheric waves by previous work, we calculate the parameters of ionospheric waves by applying the MMEM to numerously temporally approximate and spatially close global-positioning-system radio occultation total electron content profile triples provided by the unique clustered satellites flight between years 2006 and 2007 right after the constellation observing system for meteorology, ionosphere, and climate (COSMIC) mission launch. The results show that the amplitude of ionospheric waves increases at the low and high latitudes (0.15 TECU) and decreases in the mid-latitudes (0.05 TECU). The vertical wavelength of the ionospheric waves increases in the mid-latitudes (e.g., 50 km at altitudes of 200–250 km) and decreases at the low and high latitudes (e.g., 35 km at altitudes of 200–250 km). The horizontal wavelength shows a similar result (e.g., 1400 km in the mid-latitudes and 800 km at the low and high latitudes).
  • Article Text

  • [1]
    Rice D D et al. 1988 Radio Sci. 23 919 doi: 10.1029/RS023i006p00919

    CrossRef Google Scholar

    [2]
    Bristow W A, Greenwald R A and Samson J C 1994 J. Geophys. Res. 99 319 doi: 10.1029/93JA01470

    CrossRef Google Scholar

    [3]
    Hernández M et al. 2006 J. Geophys. Res. 111 11

    Google Scholar

    [4]
    Galushko V G et al. 1998 Ann. Geophys. 16 821 doi: 10.1007/s00585-998-0821-3

    CrossRef Google Scholar

    [5]
    Morf M et al. 1978 IEEE Trans. Geosci. Electron. 16 85 doi: 10.1109/TGE.1978.294569

    CrossRef Google Scholar

    [6]
    Preusse P et al. 2002 J. Geophys. Res. 107 8178 doi: 10.1029/2001JD000699

    CrossRef Google Scholar

    [7]
    Ern M 2004 J. Geophys. Res. 109 D20103 doi: 10.1029/2004JD004752

    CrossRef Google Scholar

    [8]
    Ding F et al. 2011 J. Geophys. Res. 116 A09327 doi: 10.1029/2011JA016545

    CrossRef Google Scholar

    [9]
    Zeng X Y et al. 2017 Sci. Chin. Earth Sci. 60 188 doi: 10.1007/s11430-016-0065-6

    CrossRef Google Scholar

    [10]
    Schreiner W et al. 2007 Geophys. Res. Lett. 34 L04808 doi: 10.1029/2006GL027557

    CrossRef Google Scholar

    [11]
    de la Torre A et al. 2014 J. Geophys. Res. 119 2046 doi: 10.1002/2013JA018870

    CrossRef Google Scholar

    [12]
    Wright C J, Rivas M B and Gille J C 2011 Atmos. Meas. Tech. 4 1581 doi: 10.5194/amt-4-1581-2011

    CrossRef Google Scholar

    [13]
    Alexander M J 2015 Geophys. Res. Lett. 42 6860 doi: 10.1002/2015GL065234

    CrossRef Google Scholar

    [14]
    Schmidt T, Alexander P and de la Torre A 2016 J. Geophys. Res. 121 4443 doi: 10.1002/2015JD024135

    CrossRef Google Scholar

    [15]
    Romero-Hernandez E et al. 2017 Adv. Space Res. 60 1838 doi: 10.1016/j.asr.2017.06.042

    CrossRef Google Scholar

    [16]
    Faber A et al. 2013 Atmos. Meas. Tech. 6 3169 doi: 10.5194/amt-6-3169-2013

    CrossRef Google Scholar

    [17]
    Vadas S L 2007 J. Geophys. Res. 112 305 doi: 10.1029/2006JA011845

    CrossRef Google Scholar

    [18]
    Balthazor R L and Moffett R J 1997 Ann. Geophys. 15 1048 doi: 10.1007/s00585-997-1048-4

    CrossRef Google Scholar

    [19]
    Kubota M et al. 2000 Geophys. Res. Lett. 27 4037 doi: 10.1029/2000GL011858

    CrossRef Google Scholar

    [20]
    Tsugawa T 2004 J. Geophys. Res. 109 A06302 doi: 10.1029/2003JA010302

    CrossRef Google Scholar

    [21]
    Zhang D H et al. 2002 Chin. J. Geophys. 45 469 doi: 10.1002/cjg2.260

    CrossRef Google Scholar

    [22]
    Kubota M, Fukunishi H and Okano S 2001 Earth Planets Space 53 741 doi: 10.1186/BF03352402

    CrossRef Google Scholar

    [23]
    Hocke K and Schlegel K 1996 Ann. Geophysicae 14 917

    Google Scholar

    [24]
    Kirchengast G, Hocke K and Schlegel K 1995 Radio Sci. 30 1551 doi: 10.1029/95RS02080

    CrossRef Google Scholar

  • Related Articles

    [1]DU Yan-Dong, HAN Wei-Hua, YAN Wei, YANG Fu-Hua. Impact of CHF3 Plasma Treatment on AlGaN/GaN HEMTs Identified by Low-Temperature Measurement [J]. Chin. Phys. Lett., 2014, 31(4): 048501. doi: 10.1088/0256-307X/31/4/048501
    [2]WANG Yong, YU Nai-Sen, LI Ming, LAU Kei-May. Improved AlGaN/GaN HEMTs Grown on Si Substrates Using Stacked AlGaN/AlN Interlayer by MOCVD [J]. Chin. Phys. Lett., 2011, 28(5): 057102. doi: 10.1088/0256-307X/28/5/057102
    [3]ZHANG Guang-Chen, FENG Shi-Wei, HU Pei-Feng, ZHAO Yan, GUO Chun-Sheng, XU Yang, CHEN Tang-Sheng, JIANG Yi-Jian. Channel Temperature Measurement of AlGaN/GaN HEMTs by Forward Schottky Characteristics2010- [J]. Chin. Phys. Lett., 2011, 28(1): 017201. doi: 10.1088/0256-307X/28/1/017201
    [4]MAO Wei, ZHANG Jin-Cheng, XUE Jun-Shuai, HAO Yao, MA Xiao-Hua, WANG Chong, LIU Hong-Xia, XU Sheng-Rui, YANG Lin-An, BI Zhi-Wei, LIANG Xiao-Zhen, ZHANG Jin-Feng, KUANG Xian-Wei. Fabrication and Characteristics of AlInN/AlN/GaN MOS-HEMTs with Ultra-Thin Atomic Layer Deposited Al2O3 Gate Dielectric [J]. Chin. Phys. Lett., 2010, 27(12): 128501. doi: 10.1088/0256-307X/27/12/128501
    [5]HU Gui-Zhou, YANG Ling, YANG Li-Yuan, QUAN Si, JIANG Shou-Gao, MA Ji-Gang, MA Xiao-Hua, HAO Yue. Characteristics in AlN/AlGaN/GaN Multilayer-Structured High-Electron-Mobility Transistors [J]. Chin. Phys. Lett., 2010, 27(8): 087302. doi: 10.1088/0256-307X/27/8/087302
    [6]FENG Chun, WANG Xiao-Liang, YANG Cui-Bai, XIAO Hong-Ling, ZHANG Ming-Lan, JIANG Li-Juan, TANG Jian, HU Guo-Xin, WANG Jun-Xi, WANG Zhan-Guo. Effect of CO on Characteristics of AlGaN/GaN Schottky Diode [J]. Chin. Phys. Lett., 2008, 25(8): 3025-3027.
    [7]MU Sen, YU Tong-Jun, HUANG Liu-Bing, JIA Chuan-Yu, PAN Yao-Bo, YANG Zhi-Jian, CHEN Zhi-Zhong, QIN Zhi-Xin, ZHANG Guo-Yi. Electrical Characteristics of InGaN/AlGaN and InGaN/GaN MQW Near UV-LEDs [J]. Chin. Phys. Lett., 2007, 24(11): 3245-3248.
    [8]HAO Zhi-Biao, GUO Tian-Yi, ZHANG Li-Chong, LUO Yi. AlGaN/GaN HEMTs with an Insulated Gate Fabricated by Inductively Coupled Plasma Oxidization [J]. Chin. Phys. Lett., 2006, 23(2): 497-499.
    [9]SHAO Jia-Ping, HAN Yan-Jun, WANG Lai, JIANG Yang, XI Guang-Yi, LI Hong-Tao, ZHAO Wei, LUO Yi. Improved Surface Characteristics and Contact Performance of Epitaxial p-AlGaN by a Chemical Treatment Process [J]. Chin. Phys. Lett., 2006, 23(2): 432-435.
    [10]WEN Bo, JIANG Ruo-Lian, ZHOU Jian-Jun, JI Xiao-Li, LIANG Ling-Yan, KONG Yue-Chan, SHEN Bo, ZHANG Rong, ZHENG You-Dou. Influence of Polarization Effects on the Energy Band of AlGaN/GaN/AlGaN Heterostructures [J]. Chin. Phys. Lett., 2004, 21(4): 720-722.

Catalog

    Article views (18) PDF downloads (135) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return