Total Ionizing Dose Response of Different Length Devices in 0.13μm Partially Depleted Silicon-on-Insulator Technology

Funds: Supported by the Weapon Equipment Pre-Research Foundation of China under Grant No 9140A11020114ZK34147, and the Shanghai Municipal Natural Science Foundation under Grant Nos 15ZR1447100 and 15ZR1447200.
  • Received Date: May 15, 2017
  • Published Date: July 31, 2017
  • An anomalous total dose effect that the long length device is more susceptible to total ionizing dose than the short one is observed with the 0.13 μm partially depleted silicon-on-insulator technology. The measured results and 3D technology computer aided design simulations demonstrate that the devices with different channel lengths may exhibit an enhanced reverse short channel effect after radiation. It is ascribed to that the halo or pocket implants introduced in processes results in non-uniform channel doping profiles along the device length and trapped charges in the shallow trench isolation regions.
  • Article Text

  • [1]
    Snoeys W et al. 2000 Nucl. Instrum. Methods Phys. Res. Sect. A 439 349 doi: 10.1016/S0168-90029900899-2

    CrossRef Google Scholar

    [2]
    Saks N S et al. 1984 IEEE Trans. Nucl. Sci. 31 1249 doi: 10.1109/TNS.1984.4333491

    CrossRef Google Scholar

    [3]
    Faccio F et al. 2008 Microelectron. Reliab. 48 1000 doi: 10.1016/j.microrel.2008.04.004

    CrossRef Google Scholar

    [4]
    Liu S T et al. 1998 IEEE Trans. Nucl. Sci. 45 2442 doi: 10.1109/23.736484

    CrossRef Google Scholar

    [5]
    Bin Y et al. 1997 IEEE Trans. Electron Devices 44 627 doi: 10.1109/16.563368

    CrossRef Google Scholar

    [6]
    Orlowski M et al. 1987 Int. Electron. Devices Meet. Washington DC USA 6–9 Dec. 1987 p 632

    Google Scholar

    [7]
    Nishida M and Onodera H 1981 IEEE Trans. Electron Devices 28 1101 doi: 10.1109/T-ED.1981.20494

    CrossRef Google Scholar

    [8]
    Turowski M et al. 2004 IEEE Trans. Nucl. Sci. 51 3166 doi: 10.1109/TNS.2004.839201

    CrossRef Google Scholar

    [9]
    Nam J et al. 2012 IEEE Trans. Nucl. Sci. 59 3021 doi: 10.1109/TNS.2012.2226751

    CrossRef Google Scholar

    [10]
    Peng C et al. 2013 Chin. Phys. Lett. 30 098502 doi: 10.1088/0256-307X/30/9/098502

    CrossRef Google Scholar

    [11]
    Faccio F et al. 2015 IEEE Trans. Nucl. Sci. 62 2933 doi: 10.1109/TNS.2015.2492778

    CrossRef Google Scholar

    [12]
    Saks N S et al. 1986 IEEE Trans. Nucl. Sci. 33 1185 doi: 10.1109/TNS.1986.4334576

    CrossRef Google Scholar

    [13]
    Rios R et al. 2002 Int. Electron. Devices Meet. San Francisco CA USA 8–11 Dec. 2002 p 113

    Google Scholar

    [14]
    Barnaby H J et al. 2009 IEEE Trans. Circuits Syst. I 56 1870 doi: 10.1109/TCSI.2009.2028411

    CrossRef Google Scholar

    [15]
    Liu Z L et al. 2011 Chin. Phys. B 20 070701 doi: 10.1088/1674-1056/20/7/070701

    CrossRef Google Scholar

  • Related Articles

    [1]GU Ting-Ting, WU Xiang, QIN Shan, LIU Jing, LI Yan-Chun, ZHANG Yu-Feng. High-Pressure and High-Temperature in situ X−Ray Diffraction Study of FeP2 up to 70 GPa [J]. Chin. Phys. Lett., 2012, 29(2): 026102. doi: 10.1088/0256-307X/29/2/026102
    [2]FAN Da-Wei, MA Mai-Ning, YANG Jun-Jie, WEI Shu-Yi, CHEN Zhi-Qiang, XIE Hong-Sen. In situ High-Pressure Synchrotron X-Ray Diffraction Study of Clinozoisite [J]. Chin. Phys. Lett., 2011, 28(12): 126103. doi: 10.1088/0256-307X/28/12/126103
    [3]FAN Da-Wei, WEI Shu-Yi, LIU Jing, LI Yan-Chun, XIE Hong-Sen. High Pressure X-Ray Diffraction Study of a Grossular–Andradite Solid Solution and the Bulk Modulus Variation along this Solid Solution [J]. Chin. Phys. Lett., 2011, 28(7): 076101. doi: 10.1088/0256-307X/28/7/076101
    [4]ZHANG Wei-Wei, CUI Qi-Liang, PAN Yue-Wu, DONG Shu-Shan, LIU Jing, ZOU Guang-Tian. High-Pressure X-Ray Diffraction and Raman Scattering of LiTaO3 [J]. Chin. Phys. Lett., 2002, 19(11): 1666-1668.
    [5]CHEN Liang-Chen, WANG Li-Jun, TANG Dong-Sheng, XIE Si-Shen, JIN Chang-Qing. X-Ray Diffraction Study of Carbon Nanotubes Under High Pressure [J]. Chin. Phys. Lett., 2001, 18(4): 577-578.
    [6]ZHAO Jing, GUO Lin, LIU Jing, YANG Yang, CHE Rong-Zheng, ZHOU Lei. High Bulk Modulus of Nanocrystal γ-Fe2O3 with Chemical Dodecyl Benzene Sulfonic Decoration Under High Pressure [J]. Chin. Phys. Lett., 2000, 17(2): 126-128.
    [7]CHEN Liang-chen, WANG Li-jun. Optical Absorption and X-Ray Diffraction Studies of Sulfur Under High Pressure [J]. Chin. Phys. Lett., 1999, 16(9): 675-676.
    [8]LI Chaorong, MAI Zhenhong, WANG Gang, WANG Yutian, WU Lansheng, CUI Shufan, XIE Sishen, JIANG Jianhua. Investigation of C60 Single Crystal by X-Ray Methods [J]. Chin. Phys. Lett., 1995, 12(4): 217-220.
    [9]CAO Xiaowen, FENG Shangshen, LONG Xiangyun, WU Yusheng, PENG Huotain, QI Zhiwei, PENG Qiyun, FANG Junren. Flux Relaxation and Pinning Potential in Weak Links of Sintered T12Ba2Ca2Cu3O10+x [J]. Chin. Phys. Lett., 1991, 8(6): 300-302.
    [10]JI Mingrong, HE Zhenghui, WU Jianxin, CHEN Zhuyao, QIAN Yitai, PAN Guoqiang, ZHANG Qirui. X-RAY PHOTOELECTRON SPECTROSCOPY STUDY OF THE SINGLE PHASE HIGH-Tc SUPERCONDUCTOR YBa2Cu3O9-δ [J]. Chin. Phys. Lett., 1988, 5(3): 117-120.

Catalog

    Article views (5) PDF downloads (526) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return