A Method of Using a Carbon Fiber Spiral-Contact Electrode to Achieve Atmospheric Pressure Glow Discharge in Air

Funds: Supported by the National Natural Science Foundation of China under Grant No 51577011.
  • Received Date: March 29, 2017
  • Published Date: July 31, 2017
  • During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforementioned phenomenon, we propose a method of using microdischarge electrodes to produce a macroscopic discharge phenomenon. In the form of an asymmetric structure composed of a carbon fiber electrode, an electrode structure of carbon fiber spiral-contact type is designed to achieve an atmospheric pressure glow discharge in air, which is characterized by low discharge voltage, low energy consumption, good diffusion and less ozone generation.
  • Article Text

  • [1]
    Jung J S and Kim J G 2017 J. Electrostat. 86 12 doi: 10.1016/j.elstat.2016.12.011

    CrossRef Google Scholar

    [2]
    Stepczyńska M 2016 Plasma Processes Polym. 13 1080 doi: 10.1002/ppap.201600051

    CrossRef Google Scholar

    [3]
    Ito Y et al. 2008 Appl. Phys. Express 1 067009 doi: 10.1143/APEX.1.067009

    CrossRef Google Scholar

    [4]
    Liu W Z, Lei X and Zhao Q 2016 Plasma Sci. Technol. 18 35 doi: 10.1088/1009-0630/18/1/07

    CrossRef Google Scholar

    [5]
    Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C and Wang L M 2007 Appl. Phys. Lett. 91 221504 doi: 10.1063/1.2819073

    CrossRef Google Scholar

    [6]
    Li X C, Niu D Y, Xu L F, Jia P Y and Chang Y Y 2012 Chin. Phys. B 21 075204 doi: 10.1088/1674-1056/21/7/075204

    CrossRef Google Scholar

    [7]
    Li B, Chen Q, Liu Z W and Wang Z D 2011 Chin. Phys. Lett. 28 015201 doi: 10.1088/0256-307X/28/1/015201

    CrossRef Google Scholar

    [8]
    Ouyang J T, Duan X X, Xu S W and He F 2012 Chin. Phys. Lett. 29 025201 doi: 10.1088/0256-307X/29/2/025201

    CrossRef Google Scholar

    [9]
    Moon S Y, Choe W and Kang B K 2004 Appl. Phys. Lett. 84 188 doi: 10.1063/1.1639135

    CrossRef Google Scholar

    [10]
    Packan D 2004 PhD Dissertation Stanford: Stanford University

    Google Scholar

    [11]
    Liu W Z, Sun G L, Li C H and Zhang R R 2014 Phys. Plasmas 21 043514 doi: 10.1063/1.4874301

    CrossRef Google Scholar

    [12]
    Lu X P, Jiang Z H, Xiong Q, Tang Z Y and Pan Y 2008 Appl. Phys. Lett. 92 151504 doi: 10.1063/1.2912524

    CrossRef Google Scholar

    [13]
    Li X, Tao X M and Yin Y X 2009 IEEE Trans. Plasma Sci. 37 759 doi: 10.1109/TPS.2009.2016968

    CrossRef Google Scholar

    [14]
    Topala I and Nagatsu M 2015 Appl. Phys. Lett. 106 054105 doi: 10.1063/1.4907349

    CrossRef Google Scholar

    [15]
    Buntat Z, Smith I R and Razali N A M 2009 J. Phys. D 42 235202 doi: 10.1088/0022-3727/42/23/235202

    CrossRef Google Scholar

    [16]
    Ono R, Yamashita Y, Takezawa K and Oda T 2005 J. Phys. D 38 2812 doi: 10.1088/0022-3727/38/16/011

    CrossRef Google Scholar

    [17]
    Wang X X, Lu M Z and Pu Y K 2002 Acta Phys. Sin. 51 2781 in Chinese

    Google Scholar

    [18]
    Radmilović Radjenović M, Matejčik Š Klas M and Radjenović B 2013 J. Phys. D 46 015302 doi: 10.1088/0022-3727/46/1/015302

    CrossRef Google Scholar

    [19]
    Radmilović Radjenović M, Radjenović B, Matejčik Š and Klas M 2014 Plasma Chem. Plasma Process 34 55 doi: 10.1007/s11090-013-9488-y

    CrossRef Google Scholar

    [20]
    Go D B and Pohlman D A 2010 J. Appl. Phys. 107 103303 doi: 10.1063/1.3380855

    CrossRef Google Scholar

    [21]
    Shiffler D A, Lacour M J, Sena M D and Mitchell M D 2000 IEEE Trans. Plasma Sci. 28 517 doi: 10.1109/27.887662

    CrossRef Google Scholar

    [22]
    Li Q and Liang E J 2005 Acta Phys. Sin. 54 5933 in Chinese

    Google Scholar

Catalog

    Article views (4) PDF downloads (443) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return