Coherent Features of Resonance-Mediated Two-Photon Absorption Enhancement by Varying the Energy Level Structure, Laser Spectrum Bandwidth and Central Frequency

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 51132004, 11474096 and 11604199, the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500, and the Higher Education Key Program of He'nan Province under Grant Nos 17A140025 and 16A140030.
  • Received Date: April 17, 2017
  • Published Date: July 31, 2017
  • The femtosecond pulse shaping technique has been shown to be an effective method to control the multi-photon absorption by the light–matter interaction. Previous studies mainly focused on the quantum coherent control of the multi-photon absorption by the phase, amplitude and polarization modulation, but the coherent features of the multi-photon absorption depending on the energy level structure, the laser spectrum bandwidth and laser central frequency still lack in-depth systematic research. In this work, we further explore the coherent features of the resonance-mediated two-photon absorption in a rubidium atom by varying the energy level structure, spectrum bandwidth and central frequency of the femtosecond laser field. The theoretical results show that the change of the intermediate state detuning can effectively influence the enhancement of the near-resonant part, which further affects the transform-limited (TL)-normalized final state population maximum. Moreover, as the laser spectrum bandwidth increases, the TL-normalized final state population maximum can be effectively enhanced due to the increase of the enhancement in the near-resonant part, but the TL-normalized final state population maximum is constant by varying the laser central frequency. These studies can provide a clear physical picture for understanding the coherent features of the resonance-mediated two-photon absorption, and can also provide a theoretical guidance for the future applications.
  • Article Text

  • [1]
    Schilders S P and Gu M 1999 Appl. Opt. 38 720 doi: 10.1364/AO.38.000720

    CrossRef Google Scholar

    [2]
    Moreaux L, Sandre O, Blanchard-Desce M and Mertz J 2000 Opt. Lett. 25 320 doi: 10.1364/OL.25.000320

    CrossRef Google Scholar

    [3]
    Larson D R, Zipfel W R, Williams R M, Clark S W, Bruchez M P, Wise F W and Webb W W 2003 Science 300 1434 doi: 10.1126/science.1083780

    CrossRef Google Scholar

    [4]
    Hernández F E, Belfield K D, Cohanoschi I, Balu M and Schafer K J 2004 Appl. Opt. 43 5394 doi: 10.1364/AO.43.005394

    CrossRef Google Scholar

    [5]
    Meshulach D and Silberberg Y 1999 Phys. Rev. A 60 1287 doi: 10.1103/PhysRevA.60.1287

    CrossRef Google Scholar

    [6]
    Amitay Z, Gamdman A, Chuntonov L and Rybak L 2008 Phys. Rev. Lett. 100 193002 doi: 10.1103/PhysRevLett.100.193002

    CrossRef Google Scholar

    [7]
    Lozovoy V V, Pastirk I, Walowicz K A and Dantus M 2003 J. Chem. Phys. 118 3187 doi: 10.1063/1.1531620

    CrossRef Google Scholar

    [8]
    Pastirk I, Dela Cruz J M, Walowicz K A, Lozovoy V V and Dantus M 2003 Opt. Express 11 1695 doi: 10.1364/OE.11.001695

    CrossRef Google Scholar

    [9]
    Zhang S, Xu S, Ding J, Lu C, Jia T, Qiu J and Sun Z 2014 Appl. Phys. Lett. 104 014101 doi: 10.1063/1.4860995

    CrossRef Google Scholar

    [10]
    Zhang S, Yao Y, Xu S, Liu P, Ding J, Jia T, Qiu J and Sun Z 2015 Sci. Rep. 5 13337 doi: 10.1038/srep13337

    CrossRef Google Scholar

    [11]
    Walowicz K A, Pastirk I, Lozovoy V V and Dantus M 2002 J. Phys. Chem. A 106 9369 doi: 10.1021/jp0258964

    CrossRef Google Scholar

    [12]
    Weiner A M 2000 Rev. Sci. Instrum. 71 1929 doi: 10.1063/1.1150614

    CrossRef Google Scholar

    [13]
    Dudovich N, Dayan B, Faeder S M G and Silberberg Y 2001 Phys. Rev. Lett. 86 47 doi: 10.1103/PhysRevLett.86.47

    CrossRef Google Scholar

    [14]
    Meshulach D and Silberberg Y 1998 Nature 396 239 doi: 10.1038/24329

    CrossRef Google Scholar

    [15]
    Zhang H, Zhang S and Sun Z 2011 Chin. Phys. B 20 083202 doi: 10.1088/1674-1056/20/8/083202

    CrossRef Google Scholar

    [16]
    Zhang S, Zhang H, Lu C, Jia T, Wang Z and Sun Z 2010 J. Chem. Phys. 133 214504 doi: 10.1063/1.3515480

    CrossRef Google Scholar

    [17]
    Yao Y, Zhang S, Zhang H, Ding J, Jia T, Qiu J and Sun Z 2015 Sci. Rep. 4 07295 doi: 10.1038/srep07295

    CrossRef Google Scholar

Catalog

    Article views (8) PDF downloads (283) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return