Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Italic/Main.js

Energy Conditions and Constraints on the Generalized Non-Local Gravity Model

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 11175077 and 11575075, and the Natural Science Foundation of Liaoning Province under Grant No L201683666.
  • Received Date: March 09, 2017
  • Published Date: June 30, 2017
  • We study and derive the energy conditions in generalized non-local gravity, which is the modified theory of general relativity obtained by adding a term m2n2RnR to the Einstein–Hilbert action. Moreover, to obtain some insight on the meaning of the energy conditions, we illustrate the evolutions of four energy conditions with the model parameter ε for different n. By analysis we give the constraints on the model parameters ε.
  • Article Text

  • [1]
    Perlmutter S et al. 1999 Astrophys. J. 517 565 doi: 10.1086/307221

    CrossRef Google Scholar

    [2]
    Riess A G et al. 1998 Astron. J. 116 1009 doi: 10.1086/300499

    CrossRef Google Scholar

    [3]
    Hinshaw G et al. 2013 Astrophys. J. Suppl. Ser. 208 19 doi: 10.1088/0067-0049/208/2/19

    CrossRef Google Scholar

    [4]
    Ade P A R et al. 2016 Astron. Astrophys. 594 A13 doi: 10.1051/0004-6361/201525830

    CrossRef Google Scholar

    [5]
    Sahni V and Starobinsky A A 2000 Int. J. Mod. Phys. D 9 373 doi: 10.1016/S0218-27180000054-2

    CrossRef Google Scholar

    [6]
    Carroll S M 2001 Living Rev. Relativ. 4 1 doi: 10.12942/lrr-2001-1

    CrossRef Google Scholar

    [7]
    Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559 doi: 10.1103/RevModPhys.75.559

    CrossRef Google Scholar

    [8]
    Copeland E J, Sami M and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 1753 doi: 10.1142/S021827180600942X

    CrossRef Google Scholar

    [9]
    Li M, Li X D, Wang S and Wang Y 2011 Commun. Theor. Phys. 56 525 doi: 10.1088/0253-6102/56/3/24

    CrossRef Google Scholar

    [10]
    Zeng X X, Hu X Y and Li L F 2017 Chin. Phys. Lett. 34 010401 doi: 10.1088/0256-307X/34/1/010401

    CrossRef Google Scholar

    [11]
    Wu Y B, Tong H D, Yang H, Lu J B, Zhao Y Y, Lu J W and Zhang X 2014 Chin. Phys. Lett. 31 029801 doi: 10.1088/0256-307X/31/2/029801

    CrossRef Google Scholar

    [12]
    Lu J B, Wu Y B, Xu L X and Wang Y T 2011 Chin. Phys. B 20 079801 doi: 10.1088/1674-1056/20/7/079801

    CrossRef Google Scholar

    [13]
    Nojiri S and Odintsov S D 2011 Phys. Rep. 505 59 doi: 10.1016/j.physrep.2011.04.001

    CrossRef Google Scholar

    [14]
    Clifton T, Ferreira P G, Padilla A and Skordis C 2012 Phys. Rep. 513 1 doi: 10.1016/j.physrep.2012.01.001

    CrossRef Google Scholar

    [15]
    Capozziello S and Laurentis M D 2011 Phys. Rep. 509 167 doi: 10.1016/j.physrep.2011.09.003

    CrossRef Google Scholar

    [16]
    Sotiriou T P and Faraoni V 2010 Rev. Mod. Phys. 82 451 doi: 10.1103/RevModPhys.82.451

    CrossRef Google Scholar

    [17]
    Felice A D and Tsujikawa S 2010 Living Rev. Relativ. 13 3 doi: 10.12942/lrr-2010-3

    CrossRef Google Scholar

    [18]
    Arkani-Hamed N, Dimopoulos S, Dvali G and Gabadadze G 2002 arXiv:hep-th/0209227

    Google Scholar

    [19]
    Deser S and Woodard R P 2007 Phys. Rev. Lett. 99 111301 doi: 10.1103/PhysRevLett.99.111301

    CrossRef Google Scholar

    [20]
    Koshelev N A 2009 Grav. Cosmol. 15 220 doi: 10.1134/S0202289309030049

    CrossRef Google Scholar

    [21]
    Koivisto T S 2010 AIP Conf. Proc. 1206 79 doi: 10.1063/1.3292516

    CrossRef Google Scholar

    [22]
    Barvinsky A O 2012 Phys. Lett. B 710 12 doi: 10.1016/j.physletb.2012.02.075

    CrossRef Google Scholar

    [23]
    Barvinsky A O 2012 Phys. Rev. D 85 104018 doi: 10.1103/PhysRevD.85.104018

    CrossRef Google Scholar

    [24]
    Maggiore M 2014 Phys. Rev. D 89 043008 doi: 10.1103/PhysRevD.89.043008

    CrossRef Google Scholar

    [25]
    Koivisto T 2008 Phys. Rev. D 77 123513 doi: 10.1103/PhysRevD.77.123513

    CrossRef Google Scholar

    [26]
    Deffayet C and Woodard R P 2009 J. Cosmol. Astropart. Phys. 0908 023 doi: 10.1088/1475-7516/2009/08/023

    CrossRef Google Scholar

    [27]
    Zhang Y L and Sasaki M 2012 Int. J. Mod. Phys. D 21 1250006 doi: 10.1142/S021827181250006X

    CrossRef Google Scholar

    [28]
    Nojiri S, Odintsov S D, Sasaki M and Zhang Y L 2011 Phys. Lett. B 696 278 doi: 10.1016/j.physletb.2010.12.035

    CrossRef Google Scholar

    [29]
    Maggiore M and Mancarella M 2014 Phys. Rev. D 90 023005 doi: 10.1103/PhysRevD.90.023005

    CrossRef Google Scholar

    [30]
    Dirian Y, Foffa S, Khosravi N, Kunz M and Maggiore M 2014 J. Cosmol. Astropart. Phys. 06 033 doi: 10.1088/1475-7516/2014/06/033

    CrossRef Google Scholar

    [31]
    Barreira A, Li B, Hellwing W A, Baugh C M and Pascoli S 2014 J. Cosmol. Astropart. Phys. 09 031 doi: 10.1088/1475-7516/2014/09/031

    CrossRef Google Scholar

    [32]
    Dirian Y and Mitsou E 2014 J. Cosmol. Astropart. Phys. 10 065 doi: 10.1088/1475-7516/2014/10/065

    CrossRef Google Scholar

    [33]
    Koivisto T S 2008 Phys. Rev. D 78 123505 doi: 10.1103/PhysRevD.78.123505

    CrossRef Google Scholar

    [34]
    Park S and Dodelson S 2013 Phys. Rev. D 87 024003 doi: 10.1103/PhysRevD.87.024003

    CrossRef Google Scholar

    [35]
    Jaccard M, Maggiore M and Mitsou E 2013 Phys. Rev. D 88 044033 doi: 10.1103/PhysRevD.88.044033

    CrossRef Google Scholar

    [36]
    Foffa S, Maggiore M and Mitsou E 2014 Int. J. Mod. Phys. A 29 1450116 doi: 10.1142/S0217751X14501164

    CrossRef Google Scholar

    [37]
    Nesseris S and Tsujikawa S 2014 Phys. Rev. D 90 024070 doi: 10.1103/PhysRevD.90.024070

    CrossRef Google Scholar

    [38]
    Zhang X, Wu Y B, Li S, Liu Y C, Chen B H, Chai Y T and Shu S 2016 J. Cosmol. Astropart. Phys. 1607 003 doi: 10.1088/1475-7516/2016/07/003

    CrossRef Google Scholar

    [39]
    Hawking S W and Ellis G F R 1973 The Large Scale Structure of Space-Time Cambridge: Cambridge University Press

    Google Scholar

    [40]
    Santos J, Alcaniz J S, Reboucas M J and Carvalho F C 2007 Phys. Rev. D 76 083513 doi: 10.1103/PhysRevD.76.083513

    CrossRef Google Scholar

    [41]
    Garcia N M, Harko T, Lobo F S N and Mimoso J P 2011 Phys. Rev. D 83 104032 doi: 10.1103/PhysRevD.83.104032

    CrossRef Google Scholar

    [42]
    Liu D and Reboucas M J 2012 Phys. Rev. D 86 083515 doi: 10.1103/PhysRevD.86.083515

    CrossRef Google Scholar

    [43]
    Atazadeh K and Darabi F 2014 Gen. Relativ. Gravitation 46 1664 doi: 10.1007/s10714-014-1664-8

    CrossRef Google Scholar

    [44]
    Sharif M and Zubair M 2013 J. High Energy Phys. 1312 079 doi: 10.1007/JHEP122013079

    CrossRef Google Scholar

    [45]
    Bertolami O and Sequeira M C 2009 Phys. Rev. D 79 104010 doi: 10.1103/PhysRevD.79.104010

    CrossRef Google Scholar

    [46]
    Wang J, Wu Y B, Guo Y X, Qi F, Zhao Y Y and Sun X Y 2010 Eur. Phys. J. C 69 3 doi: 10.1140/epjc/s10052-010-1419-y

    CrossRef Google Scholar

    [47]
    Zhao Y Y, Wu Y B, Lu J B, Zhang Z, Han W L and Lin L L 2012 Eur. Phys. J. C 72 1924 doi: 10.1140/epjc/s10052-012-1924-2

    CrossRef Google Scholar

    [48]
    Zhang Y L, Koyama K, Sasaki M and Zhao G B 2016 J. High Energy Phys. 1603 039 doi: 10.1007/JHEP032016039

    CrossRef Google Scholar

    [49]
    Visser M 1997 Science 276 88 doi: 10.1126/science.276.5309.88

    CrossRef Google Scholar

  • Related Articles

    [1]WEN Wu, SHEN Hong. K and K* Exchange Effects in Lambda Hypernuclei [J]. Chin. Phys. Lett., 2010, 27(4): 042101. doi: 10.1088/0256-307X/27/4/042101
    [2]YANG Rong-Jia, GAO Xiang-Ting. Observational Constraints on Purely Kinetic k-Essence Dark Energy Models [J]. Chin. Phys. Lett., 2009, 26(8): 089501. doi: 10.1088/0256-307X/26/8/089501
    [3]SUN Liang. Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics [J]. Chin. Phys. Lett., 2008, 25(4): 1343-1346.
    [4]YANG Rong-Jia, ZHANG Shuang-Nan. Theoretical Constraint on Purely Kinetic k-Essence [J]. Chin. Phys. Lett., 2008, 25(1): 344-346.
    [5]HUANG Yong-Sheng, WANG Nai-Yan, DUAN Xiao-Jiao, LAN Xiao-Fei, TAN Zhi-Xin, TANG Xiu-Zhang, HE Ye-Xi. Neutron Generation and Kinetic Energy of Expanding Laser Plasmas [J]. Chin. Phys. Lett., 2007, 24(10): 2792-2795.
    [6]GAO Zhe. A New Kinetic Mode Driven by Electron Temperature Gradient [J]. Chin. Phys. Lett., 2004, 21(5): 881-883.
    [7]GUO Hua, ZHOU Ran, LIU Yu-Xin, LIU Bo, LI Xi-Guo. In-Medium K+ and K- Production and K- Condensation in Supernova Matter [J]. Chin. Phys. Lett., 2004, 21(5): 817-820.
    [8]ZHENG Xiao-Ping, LI Jia-Rong. Covariant Perturbation Theory of Non-Abelian Kinetic Theory [J]. Chin. Phys. Lett., 2002, 19(1): 23-25.
    [9]WANG Shaofeng. Existence of Localized Modes in a Purely Anharmonic Chain [J]. Chin. Phys. Lett., 1995, 12(2): 95-97.
    [10]HU Xiwei. A New Turbulent Collision Integral in Plasma Kinetic Equation [J]. Chin. Phys. Lett., 1992, 9(4): 183-186.

Catalog

    Article views (174) PDF downloads (431) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return