Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity

Funds: Supported by the National Natural Science Foundation of China under Grants Nos 11374375, 11574405, 11465008 and 11547125, the Hunan Provincial Natural Science Foundation under Grant Nos 2015JJ4020 and 2015JJ2114, and the Scientific Research Fund of Hunan Provincial Education Department under Grant No 14A118.
  • Received Date: April 25, 2017
  • Published Date: June 30, 2017
  • We investigate how the driving field affects the bound states in the one-dimensional two-particle Bose–Hubbard model with an impurity. In the high-frequency regime, compared with the static lattice [Phys. Rev. Lett. 109 (2012) 116405], a new type of Floquet bound state can be obtained even for a weak particle–particle interaction by tuning the driving amplitude. Moreover, the localization degree of the Floquet bound molecular state can be adjusted by tuning the driving frequency, and even the Floquet bound molecular state can be changed into the Floquet extended state when the driving frequency is below a critical value. Our results provide an efficient way to manipulate bound states in the many-body systems.
  • Article Text

  • [1]
    Corson J P and Bohn J L 2015 Phys. Rev. A 91 013616 doi: 10.1103/PhysRevA.91.013616

    CrossRef Google Scholar

    [2]
    Boschi C et al. 2014 Phys. Rev. A 90 043606 doi: 10.1103/PhysRevA.90.043606

    CrossRef Google Scholar

    [3]
    Subrahmanyam V 2004 Phys. Rev. A 69 034304 doi: 10.1103/PhysRevA.69.034304

    CrossRef Google Scholar

    [4]
    Weithofer L et al. 2014 Phys. Rev. B 90 205416 doi: 10.1103/PhysRevB.90.205416

    CrossRef Google Scholar

    [5]
    Miyamoto M 2005 Phys. Rev. A 72 063405 doi: 10.1103/PhysRevA.72.063405

    CrossRef Google Scholar

    [6]
    Longhi S 2007 Eur. Phys. J. B 57 45 doi: 10.1140/epjb/e2007-00143-2

    CrossRef Google Scholar

    [7]
    Corrielli G et al. 2013 Phys. Rev. Lett. 111 220403 doi: 10.1103/PhysRevLett.111.220403

    CrossRef Google Scholar

    [8]
    Longhi S 2014 Opt. Lett. 39 1697 doi: 10.1364/OL.39.001697

    CrossRef Google Scholar

    [9]
    Bulgakov E N and Sadreev A F 2014 Opt. Lett. 39 5212 doi: 10.1364/OL.39.005212

    CrossRef Google Scholar

    [10]
    Boretz Y et al. 2014 Phys. Rev. A 90 023853 doi: 10.1103/PhysRevA.90.023853

    CrossRef Google Scholar

    [11]
    Neumann J V and Wigner E 1929 Z. Phys. 30 465

    Google Scholar

    [12]
    Capasso F et al. 1992 Nature 358 565 doi: 10.1038/358565a0

    CrossRef Google Scholar

    [13]
    Marinica D C et al. 2008 Phys. Rev. Lett. 100 183902 doi: 10.1103/PhysRevLett.100.183902

    CrossRef Google Scholar

    [14]
    Plotnik Y et al. 2011 Phys. Rev. Lett. 107 183901 doi: 10.1103/PhysRevLett.107.183901

    CrossRef Google Scholar

    [15]
    Hsu C W et al. 2013 Nature 499 188 doi: 10.1038/nature12289

    CrossRef Google Scholar

    [16]
    Molina M I et al. 2012 Phys. Rev. Lett. 108 070401 doi: 10.1103/PhysRevLett.108.070401

    CrossRef Google Scholar

    [17]
    Zhang J M et al. 2013 Phys. Rev. A 87 023613 doi: 10.1103/PhysRevA.87.023613

    CrossRef Google Scholar

    [18]
    Longhi S and Valle G D 2013 J. Phys.: Condens. Matter 25 235601 doi: 10.1088/0953-8984/25/23/235601

    CrossRef Google Scholar

    [19]
    Grossmann F et al. 1991 Phys. Rev. Lett. 67 516 doi: 10.1103/PhysRevLett.67.516

    CrossRef Google Scholar

    [20]
    Wu Y and Yang X 2007 Phys. Rev. Lett. 98 013601 doi: 10.1103/PhysRevLett.98.013601

    CrossRef Google Scholar

    [21]
    Yang X and Wu Y 2007 Commun. Theor. Phys. 48 339 doi: 10.1088/0253-6102/48/2/027

    CrossRef Google Scholar

    [22]
    Zhong H et al. 2014 Phys. Rev. A 90 023635 doi: 10.1103/PhysRevA.90.023635

    CrossRef Google Scholar

    [23]
    Zhou Z et al. 2013 New J. Phys. 15 123020 doi: 10.1088/1367-2630/15/12/123020

    CrossRef Google Scholar

    [24]
    Dong D et al. 2015 Chin. Phys. Lett. 32 020303 doi: 10.1088/0256-307X/32/2/020303

    CrossRef Google Scholar

    [25]
    Yang X and Wu Y 2006 J. Phys. B 39 2285 doi: 10.1088/0953-4075/39/9/013

    CrossRef Google Scholar

    [26]
    Lee C et al. 2001 Phys. Rev. A 64 053604 doi: 10.1103/PhysRevA.64.053604

    CrossRef Google Scholar

    [27]
    Lian X et al. 2014 Eur. Phys. J. D 68 189 doi: 10.1140/epjd/e2014-50188-1

    CrossRef Google Scholar

    [28]
    Ke Y et al. 2016 Laser Photon. Rev. 10 995 doi: 10.1002/lpor.201600119

    CrossRef Google Scholar

    [29]
    Chen C et al. 2015 Phys. Rev. A 91 052122 doi: 10.1103/PhysRevA.91.052122

    CrossRef Google Scholar

    [30]
    González-Santander C et al. 2013 Europhys. Lett. 102 17012 doi: 10.1209/0295-5075/102/17012

    CrossRef Google Scholar

    [31]
    Longhi S and Valle G D 2013 Sci. Rep. 3 2219 doi: 10.1038/srep02219

    CrossRef Google Scholar

    [32]
    Valle G D and Longhi S 2014 Phys. Rev. B 89 115118 doi: 10.1103/PhysRevB.89.115118

    CrossRef Google Scholar

    [33]
    Sias C et al. 2008 Phys. Rev. Lett. 100 040404 doi: 10.1103/PhysRevLett.100.040404

    CrossRef Google Scholar

    [34]
    Spethmann N et al. 2012 Phys. Rev. Lett. 109 235301 doi: 10.1103/PhysRevLett.109.235301

    CrossRef Google Scholar

    [35]
    Zenesini A et al. 2009 Phys. Rev. Lett. 102 100403 doi: 10.1103/PhysRevLett.102.100403

    CrossRef Google Scholar

    [36]
    Qin X et al. 2014 Phys. Rev. A 90 062301 doi: 10.1103/PhysRevA.90.062301

    CrossRef Google Scholar

    [37]
    Gong J et al. 2009 Phys. Rev. Lett. 103 133002 doi: 10.1103/PhysRevLett.103.133002

    CrossRef Google Scholar

    [38]
    Winkler K et al. 2006 Nature 441 853 doi: 10.1038/nature04918

    CrossRef Google Scholar

  • Related Articles

    [1]ZHAO Ming-Gang, YU Chun-Xu, GUO Ai-Qiang, HE Zhen-Ya. Discussion on Cross Section Measurement for DD Production around Ψ(3770) [J]. Chin. Phys. Lett., 2010, 27(7): 071401. doi: 10.1088/0256-307X/27/7/071401
    [2]LI Xiao-Hong, ZHANG Yu-Yu, LIU Tao, WANG Ke-Lin. Further Discussion on Polaron Existence in Dry DNA [J]. Chin. Phys. Lett., 2009, 26(12): 128701. doi: 10.1088/0256-307X/26/12/128701
    [3]WANG Peng, FANG Jian-Hui, WANG Xian-Ming. Discussion on Perturbation to Weak Noether Symmetry and Adiabatic Invariants for Lagrange Systems [J]. Chin. Phys. Lett., 2009, 26(3): 034501. doi: 10.1088/0256-307X/26/3/034501
    [4]SHANG Yu-Min, YAO Kai-Lun. Translational Invariance in Phase Diagram of S=1/2, 3/2 Spin Glass Systems [J]. Chin. Phys. Lett., 2005, 22(1): 195-198.
    [5]LIU Jue-Ping. Influence of Fermion Determinant on the Temperature Dependence of Gluon Condensates [J]. Chin. Phys. Lett., 2000, 17(1): 4-6.
    [6]LI Guang-lie, YANG Jian-jun, SHEN Hong-qing, HUANG Tao. A Note on Gluon Condensate with Translational Invariance [J]. Chin. Phys. Lett., 1999, 16(3): 175-177.
    [7]ZHANG De-gang, CHEN Zhong-jun, LI Bo-zang. Interfaces in the XY Model and Conformal Invariance [J]. Chin. Phys. Lett., 1999, 16(1): 44-46.
    [8]TANG Xiaowei. Discussion on the Chromosome Oscillation During Metaphase [J]. Chin. Phys. Lett., 1995, 12(2): 126-128.
    [9]LIU Jueping, LIU Dunhuan. A Relation Between Gluon Condensates from a Local QCD Sum Rule [J]. Chin. Phys. Lett., 1992, 9(5): 225-228.
    [10]LIU Zengrong, CAO Yongluo. Discussion on the Geometric Structure of Strange Attractor [J]. Chin. Phys. Lett., 1991, 8(10): 503-506.

Catalog

    Article views (166) PDF downloads (720) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return