Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity
-
Abstract
We investigate how the driving field affects the bound states in the one-dimensional two-particle Bose–Hubbard model with an impurity. In the high-frequency regime, compared with the static lattice [Phys. Rev. Lett. 109 (2012) 116405], a new type of Floquet bound state can be obtained even for a weak particle–particle interaction by tuning the driving amplitude. Moreover, the localization degree of the Floquet bound molecular state can be adjusted by tuning the driving frequency, and even the Floquet bound molecular state can be changed into the Floquet extended state when the driving frequency is below a critical value. Our results provide an efficient way to manipulate bound states in the many-body systems. -
-
References
[1] Corson J P and Bohn J L 2015 Phys. Rev. A 91 013616 doi: 10.1103/PhysRevA.91.013616[2] Boschi C et al. 2014 Phys. Rev. A 90 043606 doi: 10.1103/PhysRevA.90.043606[3] Subrahmanyam V 2004 Phys. Rev. A 69 034304 doi: 10.1103/PhysRevA.69.034304[4] Weithofer L et al. 2014 Phys. Rev. B 90 205416 doi: 10.1103/PhysRevB.90.205416[5] Miyamoto M 2005 Phys. Rev. A 72 063405 doi: 10.1103/PhysRevA.72.063405[6] Longhi S 2007 Eur. Phys. J. B 57 45 doi: 10.1140/epjb/e2007-00143-2[7] Corrielli G et al. 2013 Phys. Rev. Lett. 111 220403 doi: 10.1103/PhysRevLett.111.220403[8] Longhi S 2014 Opt. Lett. 39 1697 doi: 10.1364/OL.39.001697[9] Bulgakov E N and Sadreev A F 2014 Opt. Lett. 39 5212 doi: 10.1364/OL.39.005212[10] Boretz Y et al. 2014 Phys. Rev. A 90 023853 doi: 10.1103/PhysRevA.90.023853[11] Neumann J V and Wigner E 1929 Z. Phys. 30 465[12] Capasso F et al. 1992 Nature 358 565 doi: 10.1038/358565a0[13] Marinica D C et al. 2008 Phys. Rev. Lett. 100 183902 doi: 10.1103/PhysRevLett.100.183902[14] Plotnik Y et al. 2011 Phys. Rev. Lett. 107 183901 doi: 10.1103/PhysRevLett.107.183901[15] Hsu C W et al. 2013 Nature 499 188 doi: 10.1038/nature12289[16] Molina M I et al. 2012 Phys. Rev. Lett. 108 070401 doi: 10.1103/PhysRevLett.108.070401[17] Zhang J M et al. 2013 Phys. Rev. A 87 023613 doi: 10.1103/PhysRevA.87.023613[18] Longhi S and Valle G D 2013 J. Phys.: Condens. Matter 25 235601 doi: 10.1088/0953-8984/25/23/235601[19] Grossmann F et al. 1991 Phys. Rev. Lett. 67 516 doi: 10.1103/PhysRevLett.67.516[20] Wu Y and Yang X 2007 Phys. Rev. Lett. 98 013601 doi: 10.1103/PhysRevLett.98.013601[21] Yang X and Wu Y 2007 Commun. Theor. Phys. 48 339 doi: 10.1088/0253-6102/48/2/027[22] Zhong H et al. 2014 Phys. Rev. A 90 023635 doi: 10.1103/PhysRevA.90.023635[23] Zhou Z et al. 2013 New J. Phys. 15 123020 doi: 10.1088/1367-2630/15/12/123020[24] Dong D et al. 2015 Chin. Phys. Lett. 32 020303 doi: 10.1088/0256-307X/32/2/020303[25] Yang X and Wu Y 2006 J. Phys. B 39 2285 doi: 10.1088/0953-4075/39/9/013[26] Lee C et al. 2001 Phys. Rev. A 64 053604 doi: 10.1103/PhysRevA.64.053604[27] Lian X et al. 2014 Eur. Phys. J. D 68 189 doi: 10.1140/epjd/e2014-50188-1[28] Ke Y et al. 2016 Laser Photon. Rev. 10 995 doi: 10.1002/lpor.201600119[29] Chen C et al. 2015 Phys. Rev. A 91 052122 doi: 10.1103/PhysRevA.91.052122[30] González-Santander C et al. 2013 Europhys. Lett. 102 17012 doi: 10.1209/0295-5075/102/17012[31] Longhi S and Valle G D 2013 Sci. Rep. 3 2219 doi: 10.1038/srep02219[32] Valle G D and Longhi S 2014 Phys. Rev. B 89 115118 doi: 10.1103/PhysRevB.89.115118[33] Sias C et al. 2008 Phys. Rev. Lett. 100 040404 doi: 10.1103/PhysRevLett.100.040404[34] Spethmann N et al. 2012 Phys. Rev. Lett. 109 235301 doi: 10.1103/PhysRevLett.109.235301[35] Zenesini A et al. 2009 Phys. Rev. Lett. 102 100403 doi: 10.1103/PhysRevLett.102.100403[36] Qin X et al. 2014 Phys. Rev. A 90 062301 doi: 10.1103/PhysRevA.90.062301[37] Gong J et al. 2009 Phys. Rev. Lett. 103 133002 doi: 10.1103/PhysRevLett.103.133002[38] Winkler K et al. 2006 Nature 441 853 doi: 10.1038/nature04918 -
Related Articles
[1] ZHAO Ming-Gang, YU Chun-Xu, GUO Ai-Qiang, HE Zhen-Ya. Discussion on Cross Section Measurement for DD Production around Ψ(3770) [J]. Chin. Phys. Lett., 2010, 27(7): 071401. doi: 10.1088/0256-307X/27/7/071401 [2] LI Xiao-Hong, ZHANG Yu-Yu, LIU Tao, WANG Ke-Lin. Further Discussion on Polaron Existence in Dry DNA [J]. Chin. Phys. Lett., 2009, 26(12): 128701. doi: 10.1088/0256-307X/26/12/128701 [3] WANG Peng, FANG Jian-Hui, WANG Xian-Ming. Discussion on Perturbation to Weak Noether Symmetry and Adiabatic Invariants for Lagrange Systems [J]. Chin. Phys. Lett., 2009, 26(3): 034501. doi: 10.1088/0256-307X/26/3/034501 [4] SHANG Yu-Min, YAO Kai-Lun. Translational Invariance in Phase Diagram of S=1/2, 3/2 Spin Glass Systems [J]. Chin. Phys. Lett., 2005, 22(1): 195-198. [5] LIU Jue-Ping. Influence of Fermion Determinant on the Temperature Dependence of Gluon Condensates [J]. Chin. Phys. Lett., 2000, 17(1): 4-6. [6] LI Guang-lie, YANG Jian-jun, SHEN Hong-qing, HUANG Tao. A Note on Gluon Condensate with Translational Invariance [J]. Chin. Phys. Lett., 1999, 16(3): 175-177. [7] ZHANG De-gang, CHEN Zhong-jun, LI Bo-zang. Interfaces in the XY Model and Conformal Invariance [J]. Chin. Phys. Lett., 1999, 16(1): 44-46. [8] TANG Xiaowei. Discussion on the Chromosome Oscillation During Metaphase [J]. Chin. Phys. Lett., 1995, 12(2): 126-128. [9] LIU Jueping, LIU Dunhuan. A Relation Between Gluon Condensates from a Local QCD Sum Rule [J]. Chin. Phys. Lett., 1992, 9(5): 225-228. [10] LIU Zengrong, CAO Yongluo. Discussion on the Geometric Structure of Strange Attractor [J]. Chin. Phys. Lett., 1991, 8(10): 503-506.