Single-Shot Measurement of Transient Phase Shift Induced by Laser Wake

Funds: Supported by the National Natural Science Foundation of China under Grant No 61377102, and the Defense Industrial Technology Development Program under Grant No B1520133010.
  • Received Date: December 01, 2016
  • Published Date: April 30, 2017
  • Based on the frequency-to-time mapping relation of the linearly chirped pulse, the temporal phase shift induced by a laser-excited wake in a helium gas jet is measured using a chirped-pulse spectral interferometry with 140 fs resolution over a temporal region of 1 ps in a single shot. In this measurement, the image of the wake is obtained with one-dimensional spatial resolution and temporal resolution limited only by the bandwidth and chirp of the pulse. The 'bubbles' feature of the wake structure, along with multiple wakes excited by the main lobe and the side lobe of a laser focal-spot, is captured simultaneously.
  • Article Text

  • [1]
    Zuo Y L, Wei X F, Zhou K N, Zen X M, Su J Q, Jiao Z H, Xie N and Wu Z H 2016 Chin. Phys. B 25 035203 doi: 10.1088/1674-1056/25/3/035203

    CrossRef Google Scholar

    [2]
    Zhou L, Li X Y, Zhu W J, Wang J X and Tang C J 2016 Acta Phys. Sin. 65 085201 in Chinese

    Google Scholar

    [3]
    Marques J R, Geinder J P, Amiranoff F, Audebert P, Gauthier J C, Antonetti A and Grillon G 1996 Phys. Rev. Lett. 76 3566 doi: 10.1103/PhysRevLett.76.3566

    CrossRef Google Scholar

    [4]
    Siders C W, Le Blanc S P, Fisher D, Tajima T and Downer M C 1996 Phys. Rev. Lett. 76 3570 doi: 10.1103/PhysRevLett.76.3570

    CrossRef Google Scholar

    [5]
    Froehly C, Lacourt A and Viénot C J 1973 Nouv. Rev. Optique 4 183 doi: 10.1088/0335-7368/4/4/301

    CrossRef Google Scholar

    [6]
    Reynaud F, Salin F and Barthelemy A 1989 Opt. Lett. 14 275 doi: 10.1364/OL.14.000275

    CrossRef Google Scholar

    [7]
    Hideyuki K, Masaki K, Takatsugu O, Shinichi M, James K K, Shuji K, Shuhei K, Takashi Y, Toru M and Kazuhisa N 2002 Phys. Plasmas 9 1392 doi: 10.1063/1.1457464

    CrossRef Google Scholar

    [8]
    Chien C Y, La Fontaine B, Desparois A, Jiang Z, Johston T W, Kieffer J C, Pepin H and Vidal F 2000 Opt. Lett. 25 578 doi: 10.1364/OL.25.000578

    CrossRef Google Scholar

    [9]
    Geindre J P, Audebert P, Rebibo S and Gauthier J C 2001 Opt. Lett. 26 1612 doi: 10.1364/OL.26.001612

    CrossRef Google Scholar

    [10]
    Kim K Y, Alexeev I and Milchberg H M 2002 Appl. Phys. Lett. 81 4124 doi: 10.1063/1.1524701

    CrossRef Google Scholar

    [11]
    Takeda M, Ina H and Kobayashi S 1982 J. Opt. Soc. Am. 72 156 doi: 10.1364/JOSA.72.000156

    CrossRef Google Scholar

    [12]
    Augst S, Meyerhofer D D, Strickland D and Chin S L 1991 J. Opt. Soc. Am. B 8 858 doi: 10.1364/JOSAB.8.000858

    CrossRef Google Scholar

    [13]
    Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267 doi: 10.1103/PhysRevLett.43.267

    CrossRef Google Scholar

  • Cited by

    Periodical cited type(1)

    1. Lhachemi, M.N.Y., Garate, I. Phononic dynamical axion in magnetic Dirac insulators. Physical Review B, 2024, 109(14): 144304. DOI:10.1103/PhysRevB.109.144304

    Other cited types(0)

Catalog

    Article views (3) PDF downloads (329) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return