Helical Mode Absolute Statistical Equilibrium of Ideal Three-Dimensional Hall Magnetohydrodynamics

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 11375190 and 11547137.
  • Received Date: September 10, 2016
  • Published Date: December 31, 2016
  • Using the Fourier helical decomposition, we obtain the absolute statistical equilibrium spectra of left- and right-handed helical modes in the incompressible ideal Hall magnetohydrodynamics (MHD). It is shown that the left-handed helical modes play a major role on the spectral transfer properties of turbulence when the generalized helicity and magnetic helicity are both positive. In contrast, the right-handed helical modes will play a major role when both are negative. Furthermore, we also find that if the generalized helicity and magnetic helicity have opposite signs, the tendency of equilibrium spectra to condense at the large or small wave numbers will be presented in different helical sectors. This indicates that the generalized helicity dominates the forward cascade and the magnetic helicity dominates the inverse cascade properties of the Hall MHD turbulence.
  • Article Text

  • [1]
    Frisch U 1995 Turbulence: The Legacy of A. N. Kolmogorov Cambridge: Cambridge University Press

    Google Scholar

    [2]
    Biskamp D 2003 Magnetohydrodyanmics Turbulence Cambridge: Cambridge University Press

    Google Scholar

    [3]
    Verma M K 2004 Phys. Rep. 401 229 doi: 10.1016/j.physrep.2004.07.007

    CrossRef Google Scholar

    [4]
    Lee T D 1952 Q. Appl. Math. 10 69

    Google Scholar

    [5]
    Kraichnan R H 1967 Phys. Fluids 10 1417 doi: 10.1063/1.1762301

    CrossRef Google Scholar

    [6]
    Kraichnan R H 1973 J. Fluid Mech. 59 745 doi: 10.1017/S0022112073001837

    CrossRef Google Scholar

    [7]
    Frisch U et al. 1975 J. Fluid Mech. 68 769 doi: 10.1017/S002211207500122X

    CrossRef Google Scholar

    [8]
    Fyfe D and Montgomery D 1976 J. Plasma Phys. 16 181 doi: 10.1017/S0022377800020158

    CrossRef Google Scholar

    [9]
    Hasegawa A and Mima K 1978 Phys. Fluids 21 87 doi: 10.1063/1.862083

    CrossRef Google Scholar

    [10]
    Fyfe D and Montgomery D 1979 Phys. Fluids 22 246 doi: 10.1063/1.862565

    CrossRef Google Scholar

    [11]
    Stribling T and Matthaeus W H 1990 Phys. Fluids B 2 1979 doi: 10.1063/1.859419

    CrossRef Google Scholar

    [12]
    Abdalla T M et al. 2003 Phys. Plasmas 10 3077 doi: 10.1063/1.1588308

    CrossRef Google Scholar

    [13]
    Servidio S et al. 2008 Phys. Plasmas 15 042314 doi: 10.1063/1.2907789

    CrossRef Google Scholar

    [14]
    Shebalin J V 2013 Phys. Plasmas 20 102305 doi: 10.1063/1.4824009

    CrossRef Google Scholar

    [15]
    Qaisrani M H et al. 2015 Phys. Plasmas 22 092303 doi: 10.1063/1.4928900

    CrossRef Google Scholar

    [16]
    Kraichnan R H and Chen S 1989 Physica D 37 160 doi: 10.1016/0167-27898990126-7

    CrossRef Google Scholar

    [17]
    Pouquet A et al. 1976 J. Fluid Mech. 77 321 doi: 10.1017/S0022112076002140

    CrossRef Google Scholar

    [18]
    Moffatt K 1978 Magnetic Field Generation in Electrically Conducting Fluids Cambridge: Cambridge University Press

    Google Scholar

    [19]
    Krause F K and Rädler K H 1980 Mean Field Magnetohydrodynamics and Dynamo Theory Oxford: Pergamon Press

    Google Scholar

    [20]
    Krishan V and Mahajan S M 2005 Nonlinear Proc. Geophys. 12 75 doi: 10.5194/npg-12-75-2005

    CrossRef Google Scholar

    [21]
    Huba J D and Rudakov L I 2004 Phys. Rev. Lett. 93 175003 doi: 10.1103/PhysRevLett.93.175003

    CrossRef Google Scholar

    [22]
    Mininni P D et al. 2002 Astrophys. J. 567 L81 doi: 10.1086/339850

    CrossRef Google Scholar

    [23]
    Mininni P D et al. 2007 J. Plasma Phys. 73 377 doi: 10.1017/S0022377806004624

    CrossRef Google Scholar

    [24]
    Huba J D 2003 Hall Magnetohydrodynamics-A Tutorial Berlin: Springer

    Google Scholar

    [25]
    Witalis E A 1986 IEEE Trans. Plasma Sci. PS-14 842 doi: 10.1109/TPS.1986.4316632

    CrossRef Google Scholar

    [26]
    Mininni P D et al. 2003 Astrophys. J. 587 472 doi: 10.1086/368181

    CrossRef Google Scholar

    [27]
    Constantin P and Majda A 1988 Commun. Math. Phys. 115 435 doi: 10.1007/BF01218019

    CrossRef Google Scholar

    [28]
    Waleffe F 1992 Phys. Fluids A 4 350 doi: 10.1063/1.858309

    CrossRef Google Scholar

    [29]
    Chen Q N et al. 2003 Phys. Fluids 15 361 doi: 10.1063/1.1533070

    CrossRef Google Scholar

    [30]
    Galtier S and Bhattacharjee A 2003 Phys. Plasmas 10 3065 doi: 10.1063/1.1584433

    CrossRef Google Scholar

    [31]
    Galtier S 2006 J. Plasma Phys. 72 721 doi: 10.1017/S0022377806004521

    CrossRef Google Scholar

    [32]
    Biferale L et al. 2012 Phys. Rev. Lett. 108 164501 doi: 10.1103/PhysRevLett.108.164501

    CrossRef Google Scholar

    [33]
    Zhu J Z et al. 2014 J. Fluid Mech. 739 479 doi: 10.1017/jfm.2013.561

    CrossRef Google Scholar

    [34]
    Kraichnan R H and Montgomery D 1980 Rep. Prog. Phys. 43 547 doi: 10.1088/0034-4885/43/5/001

    CrossRef Google Scholar

    [35]
    Ghosh S and Goldstein M L 1997 J. Plasma Phys. 57 129 doi: 10.1017/S0022377896005260

    CrossRef Google Scholar

    [36]
    Stribling T et al. 1994 J. Geophys. Res. 99 2567 doi: 10.1029/93JA02962

    CrossRef Google Scholar

Catalog

    Article views (151) PDF downloads (752) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return