Measurement of the Low-Energy Rb–Rb Total Collision Rate in an Ion-Neutral Hybrid Trap

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 11604334, 61227807 and 61575108, and the Tsinghua Initiative Scientific Research Program under Grant No 2013THZ02-3, and the Beijing Natural Science Foundation under Grant No 1164016.
  • Received Date: August 31, 2016
  • Published Date: December 31, 2016
  • An ion–neutral hybrid trap is built to study low-energy ion–atom collisions. The ion–neutral hybrid trap is combined with two spatially concentric traps: a linear Paul trap for the ionic species and a magneto-optical trap (MOT) for the neutral species. The total ion–atom collision rate coefficient betweenRb atoms and optically dark Rb ions is measured by monitoring the reduction of the steady-state MOT atoms by sequentially introducing various mechanisms, namely photoionization and ion–atom collisions. In contrast to other experiments, a concise experimental procedure is devised to obtain the loss rates of the MOT atoms due to photoionization and ion–atom collisions in one experimental cycle, and then the collision rate of cold Rb atoms with Rb ions is deduced to  m/s with  K measured by the time of flight of the ion signal. The measurements show good agreement with the collision rate derived from the Langevin model.
  • Article Text

  • [1]
    Zhang J C, Zhu Z L, Liu Y F and Sun J F 2011 Chin. Phys. Lett. 28 123401 doi: 10.1088/0256-307X/28/12/123401

    CrossRef Google Scholar

    [2]
    Zhang J C, Zhu Z L, Liu Y F and Sun J F 2013 Chin. Phys. Lett. 30 023401 doi: 10.1088/0256-307X/30/2/023401

    CrossRef Google Scholar

    [3]
    Zhang J C, Zhu Z L and Sun J F 2012 Acta Phys. Sin. 9 093401 in Chinese

    Google Scholar

    [4]
    Ravi K, Lee S, Sharma A, Werth G and Rangwala S A 2012 Nat. Commun. 3 1126 doi: 10.1038/ncomms2131

    CrossRef Google Scholar

    [5]
    Smith W W, Makarov O P and Lin J 2005 J. Mod. Opt. 52 2253 doi: 10.1080/09500340500275850

    CrossRef Google Scholar

    [6]
    Goodman D S, Sivarajah I, Wells J E, Narducci F A and Smith W W 2012 Phys. Rev. A 86 033408 doi: 10.1103/PhysRevA.86.033408

    CrossRef Google Scholar

    [7]
    Hudson E R 2009 Phys. Rev. A 79 032716 doi: 10.1103/PhysRevA.79.032716

    CrossRef Google Scholar

    [8]
    Deiglmayr J, Göritz A, Best T, Weidemüller M and Wester R 2012 Phys. Rev. A 86 043438 doi: 10.1103/PhysRevA.86.043438

    CrossRef Google Scholar

    [9]
    Sivarajah I, Goodman D S, Wells J E, Narducci F A and Smith W W 2012 Phys. Rev. A 86 063419 doi: 10.1103/PhysRevA.86.063419

    CrossRef Google Scholar

    [10]
    Rellergert W G, Sullivan S T, Schowalter S J, Kotochigova S, Chen K and Hudson E R 2013 Nature 495 490 doi: 10.1038/nature11937

    CrossRef Google Scholar

    [11]
    Hall F H J, Aymar M, Bouloufa-Maafa N, Dulieu O and Willitsch S 2011 Phys. Rev. Lett. 107 243202 doi: 10.1103/PhysRevLett.107.243202

    CrossRef Google Scholar

    [12]
    Haze S, Hata S, Fujinaga M and Mukaiyama T 2013 Phys. Rev. A 87 052715 doi: 10.1103/PhysRevA.87.052715

    CrossRef Google Scholar

    [13]
    Rellergert W G, Sullivan S T, Kotochigova S, Petrov A, Chen K, Schowalter S J and Hudson E R 2011 Phys. Rev. Lett. 107 243201 doi: 10.1103/PhysRevLett.107.243201

    CrossRef Google Scholar

    [14]
    Sullivan S T, Rellergert W G, Kotochigova S and Hudson E R 2012 Phys. Rev. Lett. 109 223002 doi: 10.1103/PhysRevLett.109.223002

    CrossRef Google Scholar

    [15]
    Lee S, Ravi K and Rangwala S A 2013 Phys. Rev. A 87 052701 doi: 10.1103/PhysRevA.87.052701

    CrossRef Google Scholar

    [16]
    Chen K, Sullivan S T and Hudson E R 2014 Phys. Rev. Lett. 112 143009 doi: 10.1103/PhysRevLett.112.143009

    CrossRef Google Scholar

    [17]
    Cetina M, Grier A T and Vuletic V 2012 Phys. Rev. Lett. 109 253201 doi: 10.1103/PhysRevLett.109.253201

    CrossRef Google Scholar

    [18]
    Cóte R and Dalgarno A 2000 Phys. Rev. A 62 012709 doi: 10.1103/PhysRevA.62.012709

    CrossRef Google Scholar

    [19]
    Makarov O P, Cóte R, Michels H and Smith W W 2003 Phys. Rev. A 67 042705 doi: 10.1103/PhysRevA.67.042705

    CrossRef Google Scholar

    [20]
    Zhang P, Dalgarno A and Cóte R 2009 Phys. Rev. A 80 030703 doi: 10.1103/PhysRevA.80.030703

    CrossRef Google Scholar

    [21]
    Li M and Gao B 2012 Phys. Rev. A 86 012707 doi: 10.1103/PhysRevA.86.012707

    CrossRef Google Scholar

    [22]
    Schmid S, Härter A, Frisch A, Hoinka S and Denschlag J H 2012 Rev. Sci. Instrum. 83 053108 doi: 10.1063/1.4718356

    CrossRef Google Scholar

    [23]
    Hall F H, Eberle P, Hegi G, Raoult M, Aymar M, Dulieu O and Willitsch S 2013 Mol. Phys. 111 2020 doi: 10.1080/00268976.2013.780107

    CrossRef Google Scholar

    [24]
    Tomza M 2015 Phys. Rev. Lett. 115 063201 doi: 10.1103/PhysRevLett.115.063201

    CrossRef Google Scholar

    [25]
    Grier A T, Cetina M, Oručević F and Vuletić V 2009 Phys. Rev. Lett. 102 223201 doi: 10.1103/PhysRevLett.102.223201

    CrossRef Google Scholar

    [26]
    Goodman D S, Wells J E, Kwolek J M, Bluümel R, Narducci F A and Smith W W 2015 Phys. Rev. A 91 012709 doi: 10.1103/PhysRevA.91.012709

    CrossRef Google Scholar

    [27]
    Paul W 1990 Rev. Mod. Phys. 62 531 doi: 10.1103/RevModPhys.62.531

    CrossRef Google Scholar

    [28]
    Cooper C J, Hillenbrand G, Rink J, Townsend C G, Zetie K and Foot C J 1994 Europhys. Lett. 28 397 doi: 10.1209/0295-5075/28/6/004

    CrossRef Google Scholar

  • Related Articles

    [1]Man Xing, Jun Wang, Xi Zhao, Shushan Zhou. The Role of Multi-Electron and Multi-Orbital Effects in High-Order Harmonic Generation of Benzonitrile Molecules [J]. Chin. Phys. Lett., 2025, 42(4): 043201. doi: 10.1088/0256-307X/42/4/043201
    [2]ZHAO Jing, ZHAO Zeng-Xiu. Effects of Bounding Potential on High-Order Harmonic Generation with H2+ [J]. Chin. Phys. Lett., 2010, 27(6): 063301. doi: 10.1088/0256-307X/27/6/063301
    [3]GUO Ying-Chun, FU Pan-Ming, WANG Bing-Bing. High-Order Above-Threshold Ionization of H2+ in Intense Laser Field [J]. Chin. Phys. Lett., 2009, 26(3): 034204. doi: 10.1088/0256-307X/26/3/034204
    [4]GE Yu-Cheng. Laser-Duration Dependence of Emission Properties of High-Order Harmonic Generation [J]. Chin. Phys. Lett., 2008, 25(4): 1305-1308.
    [5]GE Yu-Cheng. Laser Phase Relations of High-Order Harmonic Generation [J]. Chin. Phys. Lett., 2006, 23(9): 2461-2464.
    [6]PI Liang-Wen, SHI Ting-Yun, QIAO Hao-Xue. Enhancement of Bichromatic High-Order Harmonic Generation by a Strong Laser Field and Its Third Harmonic [J]. Chin. Phys. Lett., 2006, 23(6): 1490-1493.
    [7]WANG Run-Hai, JIANG Hong-Bing, YANG Hong, WU Cheng-Yin, GONG Qi-Huang. High-Order Harmonic Generation by Two Non-Collinear Femtosecond Laser Pulses in CO [J]. Chin. Phys. Lett., 2005, 22(8): 1913-1915.
    [8]CHEN Jing, CHEN Shi-Gang, LIU Jie. High-Order Harmonic Generation in the Ionization Process [J]. Chin. Phys. Lett., 2000, 17(10): 723-725.
    [9]WANG Bing-bing, LI Xiao-feng, FU Pan-ming. Effect of a Static Electric Field on High-Harmonic Generation in a Polarized Laser Field [J]. Chin. Phys. Lett., 1999, 16(10): 723-725.
    [10]WANG Bing-bing, LI Xiao-feng, FU Pan-ming. High-Order Harmonic Generation in the Presence of Static Electric Field [J]. Chin. Phys. Lett., 1998, 15(3): 195-197.

Catalog

    Article views (303) PDF downloads (650) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return