Loading [MathJax]/jax/output/SVG/jax.js

A Gaussian Model for Anisotropic Strange Quark Stars

  • Received Date: January 21, 2016
  • Published Date: June 21, 2016
  • For studying the anisotropic strange quark stars, we assume that the radial pressure inside an anisotropic star can be obtained simply by isotropic pressure plus an additional Gaussian term with three free parameters (A, μ and χ). According to recent observations, a pulsar in a mass range of 1.97±0.04M has been measured. Hence, we take this opportunity to set the free parameters of our model. We fix χ by applying boundary and stability conditions and then search the Aμ parameter space for a maximum mass range of 1.9M<Mmax<2.1M. Our results indicate that anisotropy increases the maximum mass Mmax and also its corresponding radius R for a typical strange quark star. Furthermore, our model shows magnetic field and electric charge increase the anisotropy factor Δ. In fact, Δ has a maximum on the surface and this maximum goes up in the presence of magnetic field and electric charge. Finally, we show that anisotropy can be more effective than either magnetic field or electric charge in raising maximum mass of strange quark stars.
  • Article Text

  • Related Articles

    [1]X. F. Liu, Y. F. Fu, W. Q. Yu, J. F. Yu, Z. Y. Xie. Variational Corner Transfer Matrix Renormalization Group Method for Classical Statistical Models [J]. Chin. Phys. Lett., 2022, 39(6): 067502. doi: 10.1088/0256-307X/39/6/067502
    [2]TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation [J]. Chin. Phys. Lett., 2009, 26(6): 060501. doi: 10.1088/0256-307X/26/6/060501
    [3]LIU Zheng-Feng, WANG Xiao-Hong. Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique [J]. Chin. Phys. Lett., 2008, 25(2): 604-607.
    [4]LIN Ming-Xi, QI Sheng-Wen, LIU Yu-Liang. Influence of Gauge Fluctuation on Electron Pairing Order Parameter and Correlation Functions of a Two-Dimensional System [J]. Chin. Phys. Lett., 2006, 23(11): 3076-3079.
    [5]WU Xin-Tian. Two-Dimensional Saddle Point Equation of Ginzburg--Landau Hamiltonian for the Diluted Ising Model [J]. Chin. Phys. Lett., 2006, 23(2): 305-308.
    [6]SONG Bo, WANG Yu-Peng. The Green Function Approach to the Two-Dimensional t-J model [J]. Chin. Phys. Lett., 2003, 20(2): 287-289.
    [7]SUN Gang, CHU Qian-Jin. Phase Diagram of the 2-Dimensional Ising Model with DipolarInteraction [J]. Chin. Phys. Lett., 2001, 18(4): 491-494.
    [8]YAN Xiao-hong, ZHANG Li-de, DUAN Zhu-ping, YANG Qi-bin. Renormalization Group Approach on Nanostructured Systems [J]. Chin. Phys. Lett., 1997, 14(4): 291-294.
    [9]YAN Xiaohong, YOU Jianqiang, YAN Jiaren, ZHONG Jianxin. Renormalization Group on the Aperiodic Hamiltonian [J]. Chin. Phys. Lett., 1992, 9(11): 623-625.
    [10]TAN Weichao, YANG Chuliang. RENORMALIZATION GROUP METHOD FOR CALCULATING THE LOCALIZATION LENGTH OF COUPLED DISORDERED CHAINS [J]. Chin. Phys. Lett., 1989, 6(5): 213-216.

Catalog

    Article views (187) PDF downloads (617) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return