Electromagnetically Induced Transparency in a Cold Gas with Strong Atomic Interactions
-
Abstract
Electromagnetically induced transparency (EIT) is investigated in a system of cold, interacting cesium Rydberg atoms. The utilized cesium levels 6S1/2, 6P3/2 and nD5/2 constitute a cascade three-level system, in which a coupling laser drives the Rydberg transition, and a probe laser detects the EIT signal on the 6S1/2 to 6P3/2 transition. Rydberg EIT spectra are found to depend on the strong interaction between the Rydberg atoms. Diminished EIT transparency is obtained when the Rabi frequency of the probe laser is increased, whereas the corresponding linewidth remains unchanged. To model the system with a three-level Lindblad equation, we introduce a Rydberg-level dephasing rate γ3=κ×(ρ33/Ωp)2, with a value κ that depends on the ground-state atom density and the Rydberg level. The simulation results are largely consistent with the measurements. The experiments, in which the principal quantum number is varied between 30 and 43, demonstrate that the EIT reduction observed at large Ωp is due to the strong interactions between the Rydberg atoms. -
-
References
[1] Gallagher T F 1994 Rydberg Atoms Cambridge: Cambridge University Press[2] Comparat D and Pillet P 2010 J. Opt. Soc. Am. B 27 A208 doi: 10.1364/JOSAB.27.00A208[3] Tong D, Farooqi S M, Stanojevic J et al. 2004 Phys. Rev. Lett. 93 063001 doi: 10.1103/PhysRevLett.93.063001[4] Vogt T, Viteaut M et al. 2006 Phys. Rev. Lett. 97 083003 doi: 10.1103/PhysRevLett.97.083003[5] Vogt T, Viteaut M et al. 2007 Phys. Rev. Lett. 99 073002 doi: 10.1103/PhysRevLett.99.073002[6] Jaksch D, Cirac J I et al. 2000 Phys. Rev. Lett. 85 2208 doi: 10.1103/PhysRevLett.85.2208[7] Lukin M D, Fleischhauer M et al. 2001 Phys. Rev. Lett. 87 037901 doi: 10.1103/PhysRevLett.87.037901[8] Galindo A and Martín-Delgado 2002 Rev. Mod. Phys. 74 347 doi: 10.1103/RevModPhys.74.347[9] Isenhower L, Urban E et al. 2010 Phys. Rev. Lett. 104 010503 doi: 10.1103/PhysRevLett.104.010503[10] Boller J K, Imamo?lu A and Harris S E 1991 Phys. Rev. Lett. 66 2593 doi: 10.1103/PhysRevLett.66.2593[11] Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003 doi: 10.1103/PhysRevLett.98.113003[12] Pritchard J D, Maxwell D et al. 2010 Phys. Rev. Lett. 105 193603 doi: 10.1103/PhysRevLett.105.193603[13] Mohapatra A K, Bason M G et al. 2008 Nat. Phys. 4 890 doi: 10.1038/nphys1091[14] Gorniaczyk H, Tresp C et al. 2014 Phys. Rev. Lett. 113 053601 doi: 10.1103/PhysRevLett.113.053601[15] Tiarks D, Baur S et al. 2014 Phys. Rev. Lett. 113 053602 doi: 10.1103/PhysRevLett.113.053602[16] Viscor D, Li W and Lesanovsky I 2015 New J. Phys. 17 033007 doi: 10.1088/1367-2630/17/3/033007[17] Dudin Y and Kuzmich A 2012 Science 336 887 doi: 10.1126/science.1217901[18] Tresp C, Bienias P et al. 2015 Phys. Rev. Lett. 115 083602 doi: 10.1103/PhysRevLett.115.083602[19] Zhang H, Zhang L et al. 2014 Phys. Rev. A 90 043849 doi: 10.1103/PhysRevA.90.043849[20] Jiao Y, Li L et al. 2016 Chin. Phys. B 25 053201 doi: 10.1088/1674-1056/25/5/053201[21] Raitzsch U, Heidemann R et al. 2009 New J. Phys. 11 055014 doi: 10.1088/1367-2630/11/5/055014[22] Young L, Hill W et al. 1994 Phys. Rev. A 50 2174 doi: 10.1103/PhysRevA.50.2174[23] Singer K, Stanojevic J et al. 2005 J. Phys. B 38 S295-S307 doi: 10.1088/0953-4075/38/2/021[24] Gross M and Haroche S 1982 Phys. Rep. 93 301 doi: 10.1016/0370-15738290102-8 -
Related Articles
[1] Xiaoran Zhang, Xinyu Zhuang, Xiaobing Liu. Achieving Ultralong Spin Coherent Time of Single Nitrogen Vacancy Centers in diamond [J]. Chin. Phys. Lett., 2025, 42(4): 047601. doi: 10.1088/0256-307X/42/4/047601 [2] SU Wei, LOU Shu-Qin, YIN Guo-Lu. Theoretical Study of the Structural and Thermodynamic Properties of Amorphous SiO2 and Amorphous SiO2 with an Oxygen Defect Center [J]. Chin. Phys. Lett., 2012, 29(6): 066202. doi: 10.1088/0256-307X/29/6/066202 [3] LIU Li, KOU Li-Ying, ZHONG Zhi-Cheng, WANG Lian-Yuan, LIU Li-Fang, LI Wei. Preparation and Humidity Sensing Properties of KCl/MCM-41 Composite [J]. Chin. Phys. Lett., 2010, 27(5): 050701. doi: 10.1088/0256-307X/27/5/050701 [4] GUO Li-Jun, MA Guo-Hong, ZOU Yong-Long, XU Chun-He, LIU Ye, MI Jun, QIAN Shi-Xiong, LIU Jian-Hua. Energy Transfer Pathways in Reaction Center upon FemtosecondExcitation of Accessory Bacteriochlorophylls [J]. Chin. Phys. Lett., 2001, 18(4): 522-524. [5] QIN Li, WEI Zhan-Xiong, WANG Qing-Ya, LI Hui-Ping, ZHANG Yu-Shu, GAO Ding-San. Abnormal Shift of Center Wavelength in Annealing Long-Period Gratings [J]. Chin. Phys. Lett., 2000, 17(1): 28-30. [6] ZHANG Ze-bo, LI Yin-an, XIE Si-shen, YANG Guo-zhen. Polycrystalline β-C3N4 Thin Films Deposited on Single-Crystal KCl(100) Using rf Sputtering [J]. Chin. Phys. Lett., 1996, 13(1): 69-72. [7] WANG Xiaoguang. Quantum Zeno Effect Induced by Quantum Measurement of Momentum of Atomic Mass Center [J]. Chin. Phys. Lett., 1995, 12(12): 728-730. [8] LIN Bizhou, XU Chenghuang, QIU Jizhan, CHEN Guangfu. Formation of Two F+2-Like Centers Coexisting in KCl : Li+, Na+, OH- Crystal [J]. Chin. Phys. Lett., 1994, 11(10): 623-625. [9] GU Hongen, CHEN Zhifang, LI Zhijuan. Spectral Property and Stability of Color Centers in Alkali Halide Crystals Induced by He+ Ion Implantation at Room Temperature [J]. Chin. Phys. Lett., 1993, 10(3): 163-166. [10] GU Hongen, GUO Shaozhang, RUAN Yongfeng, WAN Liangfeng. A PULSE COLOR-CENTER LASER USING F+3 CENTER IN LiF CRYSTAL AT ROOM TEMPERATURE [J]. Chin. Phys. Lett., 1988, 5(6): 241-242.