Processing math: 100%

Electromagnetically Induced Transparency in a Cold Gas with Strong Atomic Interactions

Funds: Supported by the National Basic Research Program of China under Grant No 2012CB921603, Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China under Grant No IRT13076, the State Key Program of the National Natural Science of China under Grant No 11434007, the National Natural Science of China under Grant Nos 11274209, 61475090, 60378039 and 61378013, and Shanxi Scholarship Council of China (2014-009).
  • Received Date: September 12, 2016
  • Published Date: November 30, 2016
  • Electromagnetically induced transparency (EIT) is investigated in a system of cold, interacting cesium Rydberg atoms. The utilized cesium levels 6S1/2, 6P3/2 and nD5/2 constitute a cascade three-level system, in which a coupling laser drives the Rydberg transition, and a probe laser detects the EIT signal on the 6S1/2 to 6P3/2 transition. Rydberg EIT spectra are found to depend on the strong interaction between the Rydberg atoms. Diminished EIT transparency is obtained when the Rabi frequency of the probe laser is increased, whereas the corresponding linewidth remains unchanged. To model the system with a three-level Lindblad equation, we introduce a Rydberg-level dephasing rate γ3=κ×(ρ33/Ωp)2, with a value κ that depends on the ground-state atom density and the Rydberg level. The simulation results are largely consistent with the measurements. The experiments, in which the principal quantum number is varied between 30 and 43, demonstrate that the EIT reduction observed at large Ωp is due to the strong interactions between the Rydberg atoms.
  • Article Text

  • [1]
    Gallagher T F 1994 Rydberg Atoms Cambridge: Cambridge University Press

    Google Scholar

    [2]
    Comparat D and Pillet P 2010 J. Opt. Soc. Am. B 27 A208 doi: 10.1364/JOSAB.27.00A208

    CrossRef Google Scholar

    [3]
    Tong D, Farooqi S M, Stanojevic J et al. 2004 Phys. Rev. Lett. 93 063001 doi: 10.1103/PhysRevLett.93.063001

    CrossRef Google Scholar

    [4]
    Vogt T, Viteaut M et al. 2006 Phys. Rev. Lett. 97 083003 doi: 10.1103/PhysRevLett.97.083003

    CrossRef Google Scholar

    [5]
    Vogt T, Viteaut M et al. 2007 Phys. Rev. Lett. 99 073002 doi: 10.1103/PhysRevLett.99.073002

    CrossRef Google Scholar

    [6]
    Jaksch D, Cirac J I et al. 2000 Phys. Rev. Lett. 85 2208 doi: 10.1103/PhysRevLett.85.2208

    CrossRef Google Scholar

    [7]
    Lukin M D, Fleischhauer M et al. 2001 Phys. Rev. Lett. 87 037901 doi: 10.1103/PhysRevLett.87.037901

    CrossRef Google Scholar

    [8]
    Galindo A and Martín-Delgado 2002 Rev. Mod. Phys. 74 347 doi: 10.1103/RevModPhys.74.347

    CrossRef Google Scholar

    [9]
    Isenhower L, Urban E et al. 2010 Phys. Rev. Lett. 104 010503 doi: 10.1103/PhysRevLett.104.010503

    CrossRef Google Scholar

    [10]
    Boller J K, Imamo?lu A and Harris S E 1991 Phys. Rev. Lett. 66 2593 doi: 10.1103/PhysRevLett.66.2593

    CrossRef Google Scholar

    [11]
    Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003 doi: 10.1103/PhysRevLett.98.113003

    CrossRef Google Scholar

    [12]
    Pritchard J D, Maxwell D et al. 2010 Phys. Rev. Lett. 105 193603 doi: 10.1103/PhysRevLett.105.193603

    CrossRef Google Scholar

    [13]
    Mohapatra A K, Bason M G et al. 2008 Nat. Phys. 4 890 doi: 10.1038/nphys1091

    CrossRef Google Scholar

    [14]
    Gorniaczyk H, Tresp C et al. 2014 Phys. Rev. Lett. 113 053601 doi: 10.1103/PhysRevLett.113.053601

    CrossRef Google Scholar

    [15]
    Tiarks D, Baur S et al. 2014 Phys. Rev. Lett. 113 053602 doi: 10.1103/PhysRevLett.113.053602

    CrossRef Google Scholar

    [16]
    Viscor D, Li W and Lesanovsky I 2015 New J. Phys. 17 033007 doi: 10.1088/1367-2630/17/3/033007

    CrossRef Google Scholar

    [17]
    Dudin Y and Kuzmich A 2012 Science 336 887 doi: 10.1126/science.1217901

    CrossRef Google Scholar

    [18]
    Tresp C, Bienias P et al. 2015 Phys. Rev. Lett. 115 083602 doi: 10.1103/PhysRevLett.115.083602

    CrossRef Google Scholar

    [19]
    Zhang H, Zhang L et al. 2014 Phys. Rev. A 90 043849 doi: 10.1103/PhysRevA.90.043849

    CrossRef Google Scholar

    [20]
    Jiao Y, Li L et al. 2016 Chin. Phys. B 25 053201 doi: 10.1088/1674-1056/25/5/053201

    CrossRef Google Scholar

    [21]
    Raitzsch U, Heidemann R et al. 2009 New J. Phys. 11 055014 doi: 10.1088/1367-2630/11/5/055014

    CrossRef Google Scholar

    [22]
    Young L, Hill W et al. 1994 Phys. Rev. A 50 2174 doi: 10.1103/PhysRevA.50.2174

    CrossRef Google Scholar

    [23]
    Singer K, Stanojevic J et al. 2005 J. Phys. B 38 S295-S307 doi: 10.1088/0953-4075/38/2/021

    CrossRef Google Scholar

    [24]
    Gross M and Haroche S 1982 Phys. Rep. 93 301 doi: 10.1016/0370-15738290102-8

    CrossRef Google Scholar

  • Related Articles

    [1]Xiaoran Zhang, Xinyu Zhuang, Xiaobing Liu. Achieving Ultralong Spin Coherent Time of Single Nitrogen Vacancy Centers in diamond [J]. Chin. Phys. Lett., 2025, 42(4): 047601. doi: 10.1088/0256-307X/42/4/047601
    [2]SU Wei, LOU Shu-Qin, YIN Guo-Lu. Theoretical Study of the Structural and Thermodynamic Properties of Amorphous SiO2 and Amorphous SiO2 with an Oxygen Defect Center [J]. Chin. Phys. Lett., 2012, 29(6): 066202. doi: 10.1088/0256-307X/29/6/066202
    [3]LIU Li, KOU Li-Ying, ZHONG Zhi-Cheng, WANG Lian-Yuan, LIU Li-Fang, LI Wei. Preparation and Humidity Sensing Properties of KCl/MCM-41 Composite [J]. Chin. Phys. Lett., 2010, 27(5): 050701. doi: 10.1088/0256-307X/27/5/050701
    [4]GUO Li-Jun, MA Guo-Hong, ZOU Yong-Long, XU Chun-He, LIU Ye, MI Jun, QIAN Shi-Xiong, LIU Jian-Hua. Energy Transfer Pathways in Reaction Center upon FemtosecondExcitation of Accessory Bacteriochlorophylls [J]. Chin. Phys. Lett., 2001, 18(4): 522-524.
    [5]QIN Li, WEI Zhan-Xiong, WANG Qing-Ya, LI Hui-Ping, ZHANG Yu-Shu, GAO Ding-San. Abnormal Shift of Center Wavelength in Annealing Long-Period Gratings [J]. Chin. Phys. Lett., 2000, 17(1): 28-30.
    [6]ZHANG Ze-bo, LI Yin-an, XIE Si-shen, YANG Guo-zhen. Polycrystalline β-C3N4 Thin Films Deposited on Single-Crystal KCl(100) Using rf Sputtering [J]. Chin. Phys. Lett., 1996, 13(1): 69-72.
    [7]WANG Xiaoguang. Quantum Zeno Effect Induced by Quantum Measurement of Momentum of Atomic Mass Center [J]. Chin. Phys. Lett., 1995, 12(12): 728-730.
    [8]LIN Bizhou, XU Chenghuang, QIU Jizhan, CHEN Guangfu. Formation of Two F+2-Like Centers Coexisting in KCl : Li+, Na+, OH- Crystal [J]. Chin. Phys. Lett., 1994, 11(10): 623-625.
    [9]GU Hongen, CHEN Zhifang, LI Zhijuan. Spectral Property and Stability of Color Centers in Alkali Halide Crystals Induced by He+ Ion Implantation at Room Temperature [J]. Chin. Phys. Lett., 1993, 10(3): 163-166.
    [10]GU Hongen, GUO Shaozhang, RUAN Yongfeng, WAN Liangfeng. A PULSE COLOR-CENTER LASER USING F+3 CENTER IN LiF CRYSTAL AT ROOM TEMPERATURE [J]. Chin. Phys. Lett., 1988, 5(6): 241-242.

Catalog

    Article views (3) PDF downloads (627) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return