Thermally Controllable Break Junctions with High Bandwidths and High Integrabilities
-
Abstract
Break junctions are important in generating nanosensors and single molecular devices. The mechanically controllable break junction is the most widely used method for a break junction due to its simplicity and stability. However, the bandwidths of traditional devices are limited to about a few hertz. Moreover, when using traditional methods it is hard to allow independent control of more than one junction. Here we propose on-chip thermally controllable break junctions to overcome these challenges. This is verified by using finite element analysis. Adopting microelectromechanical systems produces features of high bandwidth and independent controllability to this new break junction system. The proposed method will have a wide range of applications on on-chip high speed independent controllable and highly integrated single molecule devices.
Article Text
-
-
-
About This Article
Cite this article:
MENG Chao, HUANG Pu, ZHOU Jing-Wei, DUAN Chang-Kui, DU Jiang-Feng. Thermally Controllable Break Junctions with High Bandwidths and High Integrabilities[J]. Chin. Phys. Lett., 2015, 32(7): 076201. DOI: 10.1088/0256-307X/32/7/076201
MENG Chao, HUANG Pu, ZHOU Jing-Wei, DUAN Chang-Kui, DU Jiang-Feng. Thermally Controllable Break Junctions with High Bandwidths and High Integrabilities[J]. Chin. Phys. Lett., 2015, 32(7): 076201. DOI: 10.1088/0256-307X/32/7/076201
|
MENG Chao, HUANG Pu, ZHOU Jing-Wei, DUAN Chang-Kui, DU Jiang-Feng. Thermally Controllable Break Junctions with High Bandwidths and High Integrabilities[J]. Chin. Phys. Lett., 2015, 32(7): 076201. DOI: 10.1088/0256-307X/32/7/076201
MENG Chao, HUANG Pu, ZHOU Jing-Wei, DUAN Chang-Kui, DU Jiang-Feng. Thermally Controllable Break Junctions with High Bandwidths and High Integrabilities[J]. Chin. Phys. Lett., 2015, 32(7): 076201. DOI: 10.1088/0256-307X/32/7/076201
|