Universality of a Critical Magnetic Field in a Holographic Superconductor

  • Received Date: October 10, 2014
  • Revised Date: March 22, 2015
  • Published Date: March 31, 2015
  • We study aspects of holographic superconductors analytically in the presence of a constant external magnetic field. It is shown that the critical temperature and the critical magnetic field can be calculated at nonzero temperature. We detect the Meissner effect in such superconductors. A universal relation between black hole mass M and critical magnetic field Hc is proposed to be Hc/M2/3≤0.687365. We also discuss some aspects of phase transition in terms of black hole entropy and Bekenstein's entropy to the energy upper bound.
  • Article Text

  • [1] Horowitz G T and Polchinski J 2009 Approaches to Quantum Gravity (Cambridge: Cambridge University Press)
    [2] Witten E 1998 Adv. Theor. Math. Phys. 2 253
    [3]
    Maldacena J 1999 Adv. Theor. Math. Phys. 2 231
    Maldacena J 1999 Int. J. Theor. Phys. 38 1113

    1999 Int. J. Theor. Phys. 38 1113" target="_blank">Google Scholar

    [4] Gubser S S 2008 Phys. Rev. D 78 065034
    [5] Hartnoll S A, Herzog C P and Horowitz G T 2008 Phys. Rev. Lett. 101 031601
    [6] Hartnoll S A 2009 Class. Quantum Grav. 26 224002
    [7] Herzog C P 2009 J. Phys. A 42 343001
    [8] Horowitz G T 2010 arXiv:1002.1722 [hep-th]
    [9] Hartnoll S A, Herzog C P and Horowitz G T 2008 J. High Energy Phys. 0812 015
    [10] Cai R G, Li L, Li L F and Yang R Q 2014 J. High Energy Phys. 1404 016
    [11] Cai R G, Li L and Li L F 2014 J. High Energy Phys. 1401 032
    [12] Momeni D, Majd N and Myrzakulov R 2012 Europhys. Lett. 97 61001
    [13] Roychowdhury D 2013 J. High Energy Phys. 1305 162
    [14] Cai R G, Li L, Li L F and Su R K 2013 J. High Energy Phys. 1306 063
    [15] Arias R E and Landea I S 2013 J. High Energy Phys. 1301 157
    [16] Gangopadhyay S and Roychowdhury D 2012 J. High Energy Phys. 1208 104
    [17] Chen S, Pan Q and Jing J 2013 Commun. Theor. Phys. 60 471
    [18] Cai R G, He S, Li L and Zhang Y L 2012 J. High Energy Phys. 1207 027
    [19] Kuang X M, Li W J and Ling Y 2012 Class. Quantum Grav. 29 085015
    [20] Murray J M and Tesanovic Z 2011 Phys. Rev. D 83 126011
    [21] Cai R G, Nie Z Y and Zhang H Q 2011 Phys. Rev. D 83 066013
    [22] Momeni D, Myrzakulov R and Raza M 2013 Int. J. Mod. Phys. A 28 1350096
    [23] Zeng H B, Sun W M and Zong H S 2011 Phys. Rev. D 83 046010
    [24] Cai R G, Nie Z Y and Zhang H Q 2010 Phys. Rev. D 82 066007
    [25] Zeng H B, Fan Z Y and Zong H S 2010 Phys. Rev. D 81 106001
    [26] Chen J W, Kao Y J, Maity D, Wen W Y and Yeh C P 2010 Phys. Rev. D 81 106008
    [27] Zeng H B, Fan Z Y and Zong H S 2010 Phys. Rev. D 82 126008
    [28] Chen S B, Pa Q Y and Jing J L 2012 Chin. Phys. B 21 040403
    [29] Gao D 2012 Phys. Lett. A 376 1705
    [30] Ge X H, Tu S F and Wang B 2012 J. High Energy Phys. 1209 088
    [31] Krikun A 2013 arXiv:1312.1588 [hep-th]
    [32] Nishida M 2014 arXiv:1403.6070 [hep-th]
    [33] Li L F, Cai R G, Li L and Wang Y Q 2014 arXiv:1405.0382 [hep-th]
    [34] Momeni D, Raza M and Myrzakulov R 2014 Eur. Phys. J. Plus 129 30
    [35] Momeni D, Raza M, Setare M R and Myrzakulov R 2013 Int. J. Theor. Phys. 52 2773
    [36] Momeni D, Raza M and Myrzakulov R 2013 J. Grav. 2013 782512
    [37] Momeni D, Myrzakulov R, Sebastiani L and Setare M R 2012 arXiv:1210.7965 [hep-th]
    [38] Momeni D, Setare M R and Myrzakulov R 2012 Int. J. Mod. Phys. A 27 1250128
    [39] Setare M R and Momeni D 2011 Europhys. Lett. 96 60006
    [40] Momeni D and Setare M R 2011 Mod. Phys. Lett. A 26 2889
    [41] Momeni D, Setare M R and Majd N 2011 J. High Energy Phys. 1105 118
    [42] Cai R G, Li L, Zhang H Q and Zhang Y L 2011 Phys. Rev. D 84 126008
    [43] Wu J P 2010 arXiv:1006.0456 [hep-th]
    [44] Ge X H, Wang B, Wu S F and Yang G H 2010 J. High Energy Phys. 1008 108
    [45] Domenech O, Montull M, Pomarol A, Salvio A and Silva P J 2010 J. High Energy Phys. 1008 033
    [46] Montull M, Pujolas O, Salvio A and Silva P J 2011 Phys. Rev. Lett. 107 181601
    [47] Montull M, Pujolas O, Salvio A and Silva P J 2012 J. High Energy Phys. 1204 135
    [48] Salvio A 2012 J. High Energy Phys. 1209 134
    [49] Zeng H, Fan Z and Ren Z 2009 Phys. Rev. D 80 066001
    [50] Romans L J 1992 Nucl. Phys. B 383 395
    [51] Gubser S S 2008 arXiv:0801.2977 [hep-th]
    [52] Hartnoll S A, Herzog C P and Horowitz G T 2008 arXiv:0803.3295 [hep-th]
    [53] Yin L, Hou D and Ren H C 2013 arXiv:1311.3847 [hep-th]
    [54] Gregory R, Kanno S and Soda J 2009 J. High Energy Phys. 0910 010
    [55] Ge X H and Leng H Q 2012 Prog. Theor. Phys. 128 1211
    [56] Cui S L and Xue Z 2013 arXiv:1306.2013 [hep-th]
    [57] Zhao Z, Pan Q and Jing J 2013 arXiv:1311.6260 [hep-th]
    [58] Roychowdhury D 2012 Phys. Rev. D 86 106009
    [59] Bekenstein J D 1981 Phys. Rev. D 23 287
    [60] Nakano E and Wen W Y 2008 Phys. Rev. D 78 046004
    [61] Momeni D, Nakano E, Setare M R and Wen W Y 2013 Int. J. Mod. Phys. A 28 1350024
    [62] Ehrenfest P 1934 Commun. Phys. Lab. Leiden suppl.75b
    [63] Rutgers N 1934 Physica 1 1055
  • Related Articles

    [1]LI Tong-Zhong. New Vacuum State of the Electromagnetic Field-Matter CouplingSystem and the Physical Interpretation of Casimir Effect [J]. Chin. Phys. Lett., 2004, 21(1): 73-75.
    [2]ZHU Zong-Hong. Cosmic Wave Functions with the Brans-Dicke Theory [J]. Chin. Phys. Lett., 2000, 17(11): 856-858.
    [3]HE Feng, LIU liao. A New Traversable Wormhole Solution in Vacuum Brans-Dicke Theory [J]. Chin. Phys. Lett., 1999, 16(6): 394-396.
    [4]ZHAO Feng, LIU Liao. Traversable Lorentzian Wormholes in Brans-Dicke’s and Induced Gravity Theories [J]. Chin. Phys. Lett., 1996, 13(12): 881-884.
    [5]XIAO Xing-guo, ZHU Jian-yang. Wormhole Solution in Vacuum Brans-Dicke Theory with Cosmological Constant [J]. Chin. Phys. Lett., 1996, 13(6): 405-408.
    [6]SHEN Yougen. Quantum Field Theory of the Universe in the Induced Gravity [J]. Chin. Phys. Lett., 1995, 12(8): 509-512.
    [7]ZHANG Yuan Zhong. Newtonian Limit in Generalized Brans-Dicke Theory [J]. Chin. Phys. Lett., 1993, 10(9): 513-515.
    [8]ZHU Zonghong. Boundary Conditions in Quantum Cosmology in the Brans-Dicke’s Theory [J]. Chin. Phys. Lett., 1992, 9(5): 273-276.
    [9]XIANG Yingming, LIU Liao. Third Quantization of a Solvable Model in Quantum Cosmology in Brans-Dicke Theory [J]. Chin. Phys. Lett., 1991, 8(1): 52-55.
    [10]ZHU zonghong, HUANG Chaoguang, LIU Liao. A SOLVABLE MODEL IN QUANTUM COSMOLOGY IN THE BRANS-DICKES THEORY [J]. Chin. Phys. Lett., 1990, 7(10): 477-480.

Catalog

    Article views (0) PDF downloads (359) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return