The Noncommutative Landau Problem in Podolsky's Generalized Electrodynamics
-
Abstract
The Landau problem in Podolsky's generalized electrodynamics is studied by the method of diagonalization in noncommutative phase space and we find that the different noncommutative effects for a certain system led by the nonuniqueness of generalized Bopp shift can be avoided. The exact energy eigenvalues are found, and the result shows that the energy spectra are generically non-degenerate. Furthermore, we obtain the special energy spectra of noncommutative space and commutative space.
Article Text
-
-
-
About This Article
Cite this article:
DIAO Xin-Feng, LONG Chao-Yun, KONG Bo, LONG Zheng-Wen. The Noncommutative Landau Problem in Podolsky's Generalized Electrodynamics[J]. Chin. Phys. Lett., 2015, 32(4): 040301. DOI: 10.1088/0256-307X/32/4/040301
DIAO Xin-Feng, LONG Chao-Yun, KONG Bo, LONG Zheng-Wen. The Noncommutative Landau Problem in Podolsky's Generalized Electrodynamics[J]. Chin. Phys. Lett., 2015, 32(4): 040301. DOI: 10.1088/0256-307X/32/4/040301
|
DIAO Xin-Feng, LONG Chao-Yun, KONG Bo, LONG Zheng-Wen. The Noncommutative Landau Problem in Podolsky's Generalized Electrodynamics[J]. Chin. Phys. Lett., 2015, 32(4): 040301. DOI: 10.1088/0256-307X/32/4/040301
DIAO Xin-Feng, LONG Chao-Yun, KONG Bo, LONG Zheng-Wen. The Noncommutative Landau Problem in Podolsky's Generalized Electrodynamics[J]. Chin. Phys. Lett., 2015, 32(4): 040301. DOI: 10.1088/0256-307X/32/4/040301
|